Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDAB có DE là phân giác
nên \(\frac{AE}{EB}=\frac{AD}{DB}\)
mà DB=DC
nên \(\frac{AE}{EB}=\frac{AD}{DC}\left(1\right)\)
Xét ΔDAC có DF là phân giác
nên \(\frac{AF}{FC}=\frac{AD}{DC}\) (2)
Từ (1),(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FC}\)
Xét ΔABC có \(\frac{AE}{EB}=\frac{AF}{FC}\)
nên EF//BC
b: Xét ΔABD có EI//BD
nên \(\frac{EI}{BD}=\frac{AI}{AD}\left(3\right)\)
Xét ΔACD có IF//DC
nên \(\frac{IF}{DC}=\frac{AI}{AD}\left(4\right)\)
Từ (3),(4) suy ra \(\frac{EI}{BD}=\frac{IF}{DC}\)
mà BD=DC
nên EI=IF
=>I là trung điểm của EF

a: Xét ΔABC vuông tại A có AD là đường cao
nên \(AD^2=BD\cdot CD\)
b: \(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)
AD=3*4/5=2,4cm
c: BI là phân giác
=>DI/IA=DB/BA
AK là phân giác
=>DK/KC=DA/AC
mà DB/BA=DA/AC
nên DI/IA=KD/KC
=>KI//AC
a) xét tam giác AMI zà tam giác ABD có
góc BAD chung
xét tam giác ABD có tia phân giác DM
=>\(\frac{AM}{MB}=\frac{AD}{BD}\left(1\right)\)
xét tam giac ADC có tia phân giác DN
\(\frac{AN}{NC}=\frac{AD}{DC}\left(2\right)\)
mà BD=DC (gt ) (3 )
từ 1 ,2 ,3 suy ra
\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{AD}{DC}\)
=> MN//BC
b) Tam giác ABD có MI//BD
=> \(\frac{AM}{AB}=\frac{AI}{AD}=\frac{MI}{BD}\left(4\right)\)
tam giác ADC có IN//DC
=>\(\frac{AN}{AC}=\frac{AI}{DC}=\frac{IN}{DC}\left(5\right)\)
từ (4) ,(5) suy ra
\(\frac{MI}{BD}=\frac{IN}{DC}=\frac{AI}{AD}\)
mà BD=DC
=> MI=NI
=> I là trung điểm của MN