Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Tự vẽ hình ha!
Cm:
a) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
OA=OC (gt)
OD=OB (gt)
\(\widehat{O}\)chung
=>\(\Delta OAD\)=\(\Delta OCB\)(c.g.c)
=>AD=BC (2 cạnh tương ứng) (Đpcm)
b) Vì\(\Delta OAD\)=\(\Delta OCB\)(cmt) => \(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)(2 góc t/ứ)
Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{DAB}=180^0-\widehat{OAD}\)
Lại có: \(\widehat{OCB}+\widehat{BCD}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{BCD}=180^0-\widehat{OCB}\)
Mà \(\widehat{OAD}=\widehat{OCB}\)(cmt)
\(\Rightarrow\widehat{DAB}=\widehat{BCD}\)hay \(\widehat{IAB}=\widehat{ICD}\)
Ta có: OA=OC;OB=OD (GT)
=> OB-OA=OD-OC
=>AB=CD
Xét\(\Delta AIB\) và\(\Delta CID\)có:
AB=CD (cmt)
\(\widehat{IAB}=\widehat{ICD}\)(cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta AIB\)=\(\Delta CID\)(g.c.g)
=>AI=IC; IB=ID (đpcm)
c) Xét \(\Delta OID\)và\(\Delta OIB\)có:
OD=OB (gt)
ID=IB (cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta OID\)=\(\Delta OIB\)(c.g.c)
=>\(\widehat{DOI}=\widehat{BOI}\)
=> OI là tia pg của góc xOy (đpcm)

x y E D A B C 1 2 3 F 1 2
GT :Ax vuông góc AC ; Ay vuông góc AB ; AD=AC ; AE=AB ; AH vuông góc DC
KL:C/m BD=EC ; C/m BD vuông góc EC ; ME=MD
a/
Ax vuông góc AC
=> Â1=900
Ay vuông góc với AB
=>Â2=900
=>Â1=Â2
mà góc EAC=Â2+Â3
góc DAB=Â1+Â3
=> góc EAC= góc DAB
Xét \(\Delta\)EAC và \(\Delta\)DAB có :
AD=AC(gt)
AE=AB(gt)
góc EAC= góc DAB (cmt)
=> \(\Delta\)EAC = \(\Delta\)DAB
=> DB=EC ( hai cạnh tương ứng )
b đang nghĩ
c xem lại đề /

Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 7 - Học toán với OnlineMath
GT | ΔABC, \(\widehat{A}< 90^o\)
Ax ⊥ AB, AD = AB
Ay ⊥ AC, AE = AC
KL | a, BE=CD
b, BE ⊥ CD
Giải:
a, Vì Ay ⊥ AB
⇒ A1 = 90o <1>
Ax ⊥ AC
⇒ A2 = 90o <2>
Từ <1>,<2> ⇒ A1=A2
Mà \(\widehat{DAC}\) = \(\widehat{A_1}+ \widehat{A_3}\);
\(\widehat{EAC} = \widehat{A_2} + \widehat{A_3}\).
⇒ \(\widehat{DAC}\) = \(\widehat{EAC}\)
Xét ΔDAC và ΔEAB có:
AD = AB (gt)
A1= A2= \(90^o\)
AE =AC (gt)
⇒ ΔDAC = ΔEAB(c.g.c)
b, Vì ΔDAC = ΔEAB(CMT)
⇒ BE⊥ CD( 2 cạnh tương ứng)
Chức bạn học tốt nha!

a: Ta có: \(\hat{BAE}=\hat{BAC}+\hat{EAC}=\hat{BAC}+90^0\)
\(\hat{DAC}=\hat{DAB}+\hat{BAC}=90^0+\hat{BAC}\)
Do đó: \(\hat{BAE}=\hat{DAC}\)
Xét ΔBAE và ΔDAC có
BA=DA
\(\hat{BAE}=\hat{DAC}\)
AE=AC
Do đó: ΔBAE=ΔDAC
=>BE=DC
b: Gọi O là giao điểm của BE và CD
ΔBAE=ΔDAC
=>\(\hat{ABE}=\hat{ADC};\hat{AEB}=\hat{ACD}\)
Xét tứ giác ADBO có \(\hat{ADO}=\hat{ABO}\)
nên ADBO là tứ giác nội tiếp
=>\(\hat{DAB}=\hat{DOB}\)
=>\(\hat{DOB}=90^0\)
=>DC⊥BE tại O
c: Ta có: \(\hat{DAQ}+\hat{DAB}+\hat{BAH}=180^0\)
=>\(\hat{DAQ}+\hat{BAH}=180^0-90^0=90^0\)
mà \(\hat{BAH}+\hat{ABH}=90^0\) (ΔAHB vuông tại H)
nên \(\hat{DAQ}=\hat{ABH}\)
Ta có: \(\hat{PAE}+\hat{EAC}+\hat{CAH}=180^0\)
=>\(\hat{PAE}+\hat{CAH}=180^0-90^0=90^0\)
mà \(\hat{CAH}+\hat{ACH}=90^0\) (ΔAHC vuông tại H)
nên \(\hat{PAE}=\hat{ACH}\)
Xét ΔDAQ vuông tại Q và ΔABH vuông tại H có
DA=AB
\(\hat{DAQ}=\hat{ABH}\)
Do đó: ΔDAQ=ΔABH
=>DQ=AH(1)
Xét ΔPAE vuông tại P và ΔHCA vuông tại H có
AE=CA
\(\hat{PAE}=\hat{HCA}\)
Do đó: ΔPAE=ΔHCA
=>PE=HA(2)
Từ (1),(2) suy ra AH=DQ=PE
d:
Ta có: QD⊥AH
EP⊥AH
Do đó; QD//EP
Xét ΔKQD vuông tại Q và ΔKPE vuông tại P có
QD=PE
\(\hat{KQD}=\hat{KEP}\) (hai góc so le trong, DQ//EP)
Do đó: ΔKQD=ΔKPE
=>KD=KE
=>K là trung điểm của ED

A B C D E M F I K J
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)