Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 7 - Học toán với OnlineMath
GT | ΔABC, \(\widehat{A}< 90^o\)
Ax ⊥ AB, AD = AB
Ay ⊥ AC, AE = AC
KL | a, BE=CD
b, BE ⊥ CD
Giải:
a, Vì Ay ⊥ AB
⇒ A1 = 90o <1>
Ax ⊥ AC
⇒ A2 = 90o <2>
Từ <1>,<2> ⇒ A1=A2
Mà \(\widehat{DAC}\) = \(\widehat{A_1}+ \widehat{A_3}\);
\(\widehat{EAC} = \widehat{A_2} + \widehat{A_3}\).
⇒ \(\widehat{DAC}\) = \(\widehat{EAC}\)
Xét ΔDAC và ΔEAB có:
AD = AB (gt)
A1= A2= \(90^o\)
AE =AC (gt)
⇒ ΔDAC = ΔEAB(c.g.c)
b, Vì ΔDAC = ΔEAB(CMT)
⇒ BE⊥ CD( 2 cạnh tương ứng)
Chức bạn học tốt nha!

a) Ta có:
ˆ
E
A
B
=
ˆ
D
A
C
=
90
o
Khi ta cộng thêm vào 2 góc đó với cùng 1 góc
ˆ
B
A
C
ta được hai góc bằng nhau
ˆ
E
A
B
+
ˆ
B
A
C
=
ˆ
D
A
C
+
ˆ
B
A
C
hay
ˆ
E
A
C
=
ˆ
D
A
B
Xét
Δ
E
A
C
và
Δ
B
A
D
có:
A
E
=
A
B
(gt)
ˆ
E
A
C
=
ˆ
B
A
D
(cmt)
A
C
=
A
D
(gt)
⇒
Δ
E
A
C
=
Δ
B
A
D
(c.g.c)
⇒
E
C
=
B
D
(hai cạnh tương ứng) (đpcm).
b) Do
A
B
⊥
A
E
mà
A
E
không song song vớ
E
D
(AE giao ED tại E)
nên
A
B
không vuông góc với
E
D
.
image
Giải:
a, Vì Ay ⊥ AB
⇒ A1 = 90o <1>
Ax ⊥ AC
⇒ A2 = 90o <2>
Từ <1>,<2> ⇒ A1=A2
Mà ˆDACDAC^ = ˆA1+ˆA3A1^+A3^;
ˆEAC=ˆA2+ˆA3EAC^=A2^+A3^.
⇒ ˆDACDAC^ = ˆEACEAC^
Xét ΔDAC và ΔEAB có:
AD = AB (gt)
A1= A2= 90o90o
AE =AC (gt)
⇒ ΔDAC = ΔEAB(c.g.c)
b, Vì ΔDAC = ΔEAB(CMT)
⇒ BE⊥ CD( 2 cạnh tương ứng)
c, tự làm

Lần lượt hạ DM, EN vuông góc AH tại M, N
ta có ˆADM=ˆCAH (góc có cạnh tương ứng vuông góc) (1)
AD =CA (2)
ˆDAM=ˆACHDAM^=ACH^ (góc có cạnh tương ứng vuông góc) (3)
từ (1, 2, 3)=>△ADM=△CAH△ADM=△CAH (g, c, g)
=>DM =AH (4)
c minh tương tự △AEN=△BAH△AEN=△BAH (g, c, g)
=>EN =AH (5)
từ (4, 5) =>DM =EN
mà DM //EN
DMEN là hình bình hành
=>MN đi qua trung điểm I của DE
hay AH đi qua trung điểm I của DE (đpcm)
a: Ta có: \(\hat{BAE}=\hat{BAC}+\hat{EAC}=\hat{BAC}+90^0\)
\(\hat{DAC}=\hat{DAB}+\hat{BAC}=90^0+\hat{BAC}\)
Do đó: \(\hat{BAE}=\hat{DAC}\)
Xét ΔBAE và ΔDAC có
BA=DA
\(\hat{BAE}=\hat{DAC}\)
AE=AC
Do đó: ΔBAE=ΔDAC
=>BE=DC
b: Gọi O là giao điểm của BE và CD
ΔBAE=ΔDAC
=>\(\hat{ABE}=\hat{ADC};\hat{AEB}=\hat{ACD}\)
Xét tứ giác ADBO có \(\hat{ADO}=\hat{ABO}\)
nên ADBO là tứ giác nội tiếp
=>\(\hat{DAB}=\hat{DOB}\)
=>\(\hat{DOB}=90^0\)
=>DC⊥BE tại O
c: Ta có: \(\hat{DAQ}+\hat{DAB}+\hat{BAH}=180^0\)
=>\(\hat{DAQ}+\hat{BAH}=180^0-90^0=90^0\)
mà \(\hat{BAH}+\hat{ABH}=90^0\) (ΔAHB vuông tại H)
nên \(\hat{DAQ}=\hat{ABH}\)
Ta có: \(\hat{PAE}+\hat{EAC}+\hat{CAH}=180^0\)
=>\(\hat{PAE}+\hat{CAH}=180^0-90^0=90^0\)
mà \(\hat{CAH}+\hat{ACH}=90^0\) (ΔAHC vuông tại H)
nên \(\hat{PAE}=\hat{ACH}\)
Xét ΔDAQ vuông tại Q và ΔABH vuông tại H có
DA=AB
\(\hat{DAQ}=\hat{ABH}\)
Do đó: ΔDAQ=ΔABH
=>DQ=AH(1)
Xét ΔPAE vuông tại P và ΔHCA vuông tại H có
AE=CA
\(\hat{PAE}=\hat{HCA}\)
Do đó: ΔPAE=ΔHCA
=>PE=HA(2)
Từ (1),(2) suy ra AH=DQ=PE
d:
Ta có: QD⊥AH
EP⊥AH
Do đó; QD//EP
Xét ΔKQD vuông tại Q và ΔKPE vuông tại P có
QD=PE
\(\hat{KQD}=\hat{KEP}\) (hai góc so le trong, DQ//EP)
Do đó: ΔKQD=ΔKPE
=>KD=KE
=>K là trung điểm của ED