K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\hat{BAE}=\hat{BAC}+\hat{EAC}=\hat{BAC}+90^0\)

\(\hat{DAC}=\hat{DAB}+\hat{BAC}=90^0+\hat{BAC}\)

Do đó: \(\hat{BAE}=\hat{DAC}\)

Xét ΔBAE và ΔDAC có

BA=DA

\(\hat{BAE}=\hat{DAC}\)

AE=AC

Do đó: ΔBAE=ΔDAC

=>BE=DC

b: Gọi O là giao điểm của BE và CD

ΔBAE=ΔDAC

=>\(\hat{ABE}=\hat{ADC};\hat{AEB}=\hat{ACD}\)

Xét tứ giác ADBO có \(\hat{ADO}=\hat{ABO}\)

nên ADBO là tứ giác nội tiếp

=>\(\hat{DAB}=\hat{DOB}\)

=>\(\hat{DOB}=90^0\)

=>DC⊥BE tại O

c: Ta có: \(\hat{DAQ}+\hat{DAB}+\hat{BAH}=180^0\)

=>\(\hat{DAQ}+\hat{BAH}=180^0-90^0=90^0\)

\(\hat{BAH}+\hat{ABH}=90^0\) (ΔAHB vuông tại H)

nên \(\hat{DAQ}=\hat{ABH}\)

Ta có: \(\hat{PAE}+\hat{EAC}+\hat{CAH}=180^0\)

=>\(\hat{PAE}+\hat{CAH}=180^0-90^0=90^0\)

\(\hat{CAH}+\hat{ACH}=90^0\) (ΔAHC vuông tại H)

nên \(\hat{PAE}=\hat{ACH}\)

Xét ΔDAQ vuông tại Q và ΔABH vuông tại H có

DA=AB

\(\hat{DAQ}=\hat{ABH}\)

Do đó: ΔDAQ=ΔABH

=>DQ=AH(1)

Xét ΔPAE vuông tại P và ΔHCA vuông tại H có

AE=CA
\(\hat{PAE}=\hat{HCA}\)

Do đó: ΔPAE=ΔHCA
=>PE=HA(2)

Từ (1),(2) suy ra AH=DQ=PE

d:

Ta có: QD⊥AH

EP⊥AH

Do đó; QD//EP

Xét ΔKQD vuông tại Q và ΔKPE vuông tại P có

QD=PE

\(\hat{KQD}=\hat{KEP}\) (hai góc so le trong, DQ//EP)

Do đó: ΔKQD=ΔKPE

=>KD=KE

=>K là trung điểm của ED

4 tháng 9 2016

Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 7 - Học toán với OnlineMath

21 tháng 12 2017

GT | ΔABC, \(\widehat{A}< 90^o\)

Ax ⊥ AB, AD = AB

Ay ⊥ AC, AE = AC

KL | a, BE=CD

b, BE ⊥ CD

Toán lớp 7

Giải:

a, Vì Ay ⊥ AB

⇒ A1 = 90o <1>

Ax ⊥ AC

⇒ A2 = 90o <2>

Từ <1>,<2> ⇒ A1=A2

\(\widehat{DAC}\) = \(\widehat{A_1}+ \widehat{A_3}\);

\(\widehat{EAC} = \widehat{A_2} + \widehat{A_3}\).

\(\widehat{DAC}\)​ = \(\widehat{EAC}\)

Xét ΔDAC và ΔEAB có:

AD = AB (gt)

A1= A2= \(90^o\)

AE =AC (gt)

⇒ ΔDAC = ΔEAB(c.g.c)

b, Vì ΔDAC = ΔEAB(CMT)

⇒ BE⊥ CD( 2 cạnh tương ứng)

Chức bạn học tốt nha! hihi

2 tháng 4 2021

a) Ta có: 
ˆ
E
A
B
=
ˆ
D
A
C
=
90
o
Khi ta cộng thêm vào 2 góc đó với cùng 1 góc 
ˆ
B
A
C
 ta được hai góc bằng nhau

ˆ
E
A
B
+
ˆ
B
A
C
=
ˆ
D
A
C
+
ˆ
B
A
C
hay 
ˆ
E
A
C
=
ˆ
D
A
B
Xét 
Δ
E
A
C
 và 
Δ
B
A
D
 có:

A
E
=
A
B
 (gt)

ˆ
E
A
C
=
ˆ
B
A
D
 (cmt)

A
C
=
A
D
 (gt)


Δ
E
A
C
=
Δ
B
A
D
 (c.g.c)


E
C
=
B
D
 (hai cạnh tương ứng) (đpcm).

b) Do 
A
B

A
E
 mà 
A
E
 không song song vớ 
E
D
 (AE giao ED tại E)

nên 
A
B
 không vuông góc với 
E
D
.

image

Giải:

a, Vì Ay ⊥ AB

⇒ A1 = 90<1>

Ax ⊥ AC

⇒ A2 = 90<2>

Từ <1>,<2> ⇒ A1=A2

Mà ˆDACDAC^ = ˆA1+ˆA3A1^+A3^;

ˆEAC=ˆA2+ˆA3EAC^=A2^+A3^.

⇒ ˆDACDAC^​ = ˆEACEAC^

Xét ΔDAC và ΔEAB có:

AD = AB (gt)

A1= A290o90o

AE =AC (gt)

⇒ ΔDAC = ΔEAB(c.g.c)

b, Vì ΔDAC = ΔEAB(CMT)

⇒ BE⊥ CD( 2 cạnh tương ứng)

c, tự làm

1 tháng 12 2016

Lần lượt hạ DM, EN vuông góc AH tại M, N
ta có ˆADM=ˆCAH Ôn tập toán 7 (góc có cạnh tương ứng vuông góc) (1)
AD =CA (2)
ˆDAM=ˆACHDAM^=ACH^ (góc có cạnh tương ứng vuông góc) (3)
từ (1, 2, 3)=>ADM=CAH△ADM=△CAH (g, c, g)
=>DM =AH (4)
c minh tương tự AEN=BAH△AEN=△BAH (g, c, g)
=>EN =AH (5)
từ (4, 5) =>DM =EN
mà DM //EN
DMEN là hình bình hành
=>MN đi qua trung điểm I của DE
hay AH đi qua trung điểm I của DE (đpcm)

 

2 tháng 12 2016

Bài này khó quá hổng làm đượcha