Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D 1 2
Do \(\widehat{B}=\widehat{C};\widehat{A_1}=\widehat{A_2}\Rightarrow\widehat{BDA}=\widehat{CDA}\)
\(\Rightarrow\Delta ABD=ACD\left(g.c.g\right)\Rightarrow AB=AC\)

Tam giác \(A B C\) cân tại \(A\), có \(\hat{A} = 80^{\circ}\).
\(\Rightarrow \hat{B} = \hat{C} = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}\).
Vì \(B I\) là tia phân giác của \(\hat{B}\), nên \(\hat{A B I} = \hat{I B C} = \frac{50^{\circ}}{2} = 25^{\circ}\). Xét tam giác \(I B C\):
\(\hat{I C B} = \hat{C} = 50^{\circ}\).
Suy ra:
\(\hat{B I C} = 180^{\circ} - \left(\right. \hat{I B C} + \hat{I C B} \left.\right)\)
\(\hat{B I C} = 180^{\circ} - \left(\right. 25^{\circ} + 50^{\circ} \left.\right) = 105^{\circ}\).
\(\)Vậy \(\hat{BIC}\) \(=\) \(105\) °

bài 1: em tự kẻ hình nha
a, Xét 2 tam giác AMB và CME ta có: góc AMB= góc CME( đối đỉnh), AM=MC(gt),BM=ME(gt)
Vậy 2 tam giác AMB=CME(c-g-c)
b, Ta có: AM=MC, BM=ME nên AECB là hình bình hành
Vậy AE=BC và AE song song với BC
c, Vì AEBC là hình bình hành nên góc BAC= góc ACE( so le trong do AB song song với CE vì AECB là hbh)
Vậy ACE=90 độ hay CE vuông góc với AC

a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
a) Xét Δ ABD và Δ EBD có:
BA = BE (gt)
ABD = EBD (vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD= BED = 90o (2 góc tương ứng)
a,
xét tam giác ABD và EBD
BA = BE
ABD = DBC
BD chung
=> tam giác ABD = EBD ( c.g.c )
=> AD = ED ( 2 cạnh tương ứng )
b,
TA có tam giác ABD = EBD ( cmt )
=> BAD = BED ( 2 góc tương ứng )
mà A = 90 => BED = 90