Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(a = 120 a + 36 b (\text{v}ớ\text{i}\&\text{nbsp}; a , b \in \mathbb{N} \&\text{nbsp};–\&\text{nbsp};\text{t}ậ\text{p}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{t}ự\&\text{nbsp};\text{nhi} \hat{\text{e}} \text{n})\)
Tuy nhiên, biểu thức này gây nhầm lẫn do ký hiệu trùng lặp: "a" xuất hiện ở cả hai vế. Có vẻ bạn đang dùng "a" ở vế trái là một số, còn "a" ở vế phải là biến (chưa rõ).
✅ Giả sử đúng dạng đề bài là:
Cho \(A = 120 a + 36 b\) với \(a , b \in \mathbb{N}\). Chứng minh rằng A chia hết cho 12.
🔎 Giải:
Biểu thức:
\(A = 120 a + 36 b\)
Ta cần chứng minh:
\(A \div 12 (\text{hay}\&\text{nbsp}; A \equiv 0 \left(\right. m o d 12 \left.\right) \left.\right)\)
Ta phân tích:
- \(120 a = 12 \times 10 a\) ⇒ chia hết cho 12
- \(36 b = 12 \times 3 b\) ⇒ chia hết cho 12
⇒ Tổng \(A = 120 a + 36 b\) cũng chia hết cho 12
✅ Kết luận:
\(\boxed{A \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; 12}\)
Hay: A : 12 (A chia hết cho 12) — được chứng minh.
Tk

a) Ta có 120a + 36b = 12.10a + 12.3b = 12(10a + 3b) \(⋮\)12
b) Ta có 57 - 56 + 55 = 55(52 - 5 + 1) = 55.21 \(⋮\)21
c) Ta có 52012 + 52013 + 52014 = 52012(1 + 5 + 52) = 52012.31 \(⋮31\)
d) Ta có 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 73.7.11.5 = 73.5.77 \(⋮\)77
a) Vì \(\hept{\begin{cases}120⋮12\\36⋮12\end{cases}\Rightarrow}\hept{\begin{cases}120a⋮12\\36b⋮12\end{cases}}\Rightarrow\left(120a+36b\right)⋮12\)
b) \(5^7-5^6+5^5=5^5\left(5^2-5+1\right)=5^5\left(25-6+1\right)=21.5^5⋮21\)
c)\(5^{2012}+5^{2013}+5^{2014}=5^{2012}\left(1+5+5^2\right)=5^{2012}\left(1+5+25\right)=31.5^{2012}⋮31\)
d)\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=55.7^4=11.5.7^4⋮11\)
Dễ thấy : \(7^6+7^5-7^4⋮7\)
mà \(\left(11;7\right)=1\)
\(\Rightarrow7^6+7^5-7^4⋮77\)

a) Ta có: \(\hept{\begin{cases}120a⋮12\\36b⋮12\end{cases}}\)
\(\Rightarrow\left(120a+36b\right)⋮12\)
b) Ta có: \(5^7-5^6+5^5=65625\)
Mà \(65625⋮21\)
\(\Rightarrow\left(5^7-5^6+5^5\right)⋮21\)


Bài 1:
a) 120 ⋮ 12, 36 ⋮ 12
⇒120 + 36 ⋮ 12
b) 120a ⋮ 12, 36b ⋮ 12
⇒120a + 36b ⋮ 12
- Có 120 chia hết cho 12
=>120a chia hết cho 12
- Có 36 chia hết cho 12
=>36b chia hết cho 12
~HT~
A = 120a + 36b
A = 12.(10a + 3b) ⋮ 12
Vậy...
A=120a+36b
Tách 120a=12(10+a) 36b=12(3+b)
Ta có : A = 12(10a+3b)
A.........