
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Để (x + 1)(x - 2) < 0 thì ta có 2 trường hợp
Th1 : (x + 1) < 0 ; (x - 2) > 0 => x < -1 ; x > 2 (vô lí)
Th2 : (x + 1) > 0 ; (x - 2) < 0 => x > -1 ; x < 2 => -1 < x < 2
Vậy x thuộc {0;1}
b) Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) thì sảy ra 2 trường hợp
Th1 : (x - 2) > 0 ; \(\left(x+\frac{2}{3}\right)>0\) => x > 2 ; \(x>-\frac{2}{3}\) => x > 2
Th2 : (x - 2) < 0 ; \(\left(x+\frac{2}{3}\right)< 0\) => x < 2 ; \(x< -\frac{2}{3}\) => \(x< -\frac{2}{3}\)
Vậy ...........................

a: =>(3x+6)(x+5)<0
=>(x+2)(x+5)<0
=>-5<x<-2
b: \(\Leftrightarrow\dfrac{x+2}{x+1}>0\)
=>x>-1 hoặc x<-2
c: \(\Leftrightarrow\dfrac{x-1}{2x+5}-1>0\)
\(\Leftrightarrow\dfrac{x-1-2x-5}{2x+5}>0\)
\(\Leftrightarrow\dfrac{x+6}{2x+5}< 0\)
=>x>-5/2 hoặc x<-6

Bạn ghi ra nhiều vậy người khác nhìn rối mắt không trả lời được đâu ghi từng bài ra thôi
Mình chỉ làm được vài bài thôi, kiến thức có hạn :>
Bài 1:
Câu a và c đúng
Bài 2:
a) |x| = 2,5
=>x = 2,5 hoặc
x = -2,5
b) |x| = 0,56
=>x = 0,56
x = - 0,56
c) |x| = 0
=. x = 0
d)t/tự
e) |x - 1| = 5
=>x - 1 = 5
x - 1 = -5
f) |x - 1,5| = 2
=>x - 1,5 = 2
x - 1,5 = -2
=>x = 2 + 1,5
x = -2 + 1,5
=>x = 3,5
x = - 0,5
các câu sau cx t/tự thôi
Bài 3: Ko hỉu :)
Bài 4: Kiến thức có hạn :)
ài 1: Trong các khẳng định sau, khẳng định nào đúng?
a) \(\mid - 3 , 5 \mid = 3 , 5\)
b) \(\mid - 3 , 5 \mid = - 3 , 5\)
c) \(\mid - 3 , 5 \mid = - \left(\right. - 3 , 5 \left.\right)\)
Đáp án:
- Khẳng định (a) là đúng, vì giá trị tuyệt đối của một số luôn luôn là số dương hoặc bằng 0. Vậy \(\mid - 3 , 5 \mid = 3 , 5\).
- Khẳng định (b) là sai, vì \(\mid - 3 , 5 \mid\) không thể bằng -3,5 (do giá trị tuyệt đối luôn là số dương).
- Khẳng định (c) là sai, vì \(\mid - 3 , 5 \mid = 3 , 5\) và \(- \left(\right. - 3 , 5 \left.\right) = 3 , 5\), nhưng đây là cách viết không chính xác, vì hai vế của biểu thức không tương đương nhau theo nghĩa toán học.
Bài 2: Tìm x, biết:
a) \(\mid � \mid = 2 , 5\)
Giải:
\(\mid � \mid = 2 , 5 \Rightarrow � = 2 , 5 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; � = - 2 , 5\)
b) \(\mid � \mid = 0 , 56\)
Giải:
\(\mid � \mid = 0 , 56 \Rightarrow � = 0 , 56 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; � = - 0 , 56\)
c) \(\mid � \mid = 0\)
Giải:
\(\mid � \mid = 0 \Rightarrow � = 0\)
d) \(\mid � \mid = - 31441\)
Giải: Giá trị tuyệt đối của một số không thể âm, do đó, phương trình này vô nghiệm.
e) \(\mid � - 1 \mid = 5\)
Giải:
\(� - 1 = 5 \Rightarrow � = 6\)
hoặc
\(� - 1 = - 5 \Rightarrow � = - 4\)
Vậy \(� = 6\) hoặc \(� = - 4\).
f) \(\mid � - 1 , 5 \mid = 2\)
Giải:
\(� - 1 , 5 = 2 \Rightarrow � = 3 , 5\)
hoặc
\(� - 1 , 5 = - 2 \Rightarrow � = - 0 , 5\)
Vậy \(� = 3 , 5\) hoặc \(� = - 0 , 5\).
g) \(\mid 2 � + 1 \mid = 7\)
Giải:
\(2 � + 1 = 7 \Rightarrow 2 � = 6 \Rightarrow � = 3\)
hoặc
\(2 � + 1 = - 7 \Rightarrow 2 � = - 8 \Rightarrow � = - 4\)
Vậy \(� = 3\) hoặc \(� = - 4\).
h) \(\mid 4 \left(\right. � - 1 \left.\right) \mid = 12\)
Giải:
\(4 \mid � - 1 \mid = 12 \Rightarrow \mid � - 1 \mid = 3\)\(� - 1 = 3 \Rightarrow � = 4\)
hoặc
\(� - 1 = - 3 \Rightarrow � = - 2\)
Vậy \(� = 4\) hoặc \(� = - 2\).
i) \(\mid � + 3443 \mid - 1331 = 0\)
Giải:
\(\mid � + 3443 \mid = 1331 \Rightarrow � + 3443 = 1331 \Rightarrow � = - 2112\)
hoặc
\(� + 3443 = - 1331 \Rightarrow � = - 4774\)
Vậy \(� = - 2112\) hoặc \(� = - 4774\).
j) \(\mid 2 � + 1 \mid - 5 = 10\)
Giải:
\(\mid 2 � + 1 \mid = 15 \Rightarrow 2 � + 1 = 15 \Rightarrow � = 7\)
hoặc
\(2 � + 1 = - 15 \Rightarrow 2 � = - 16 \backslash\text{Right}\)

a) Có 2 trường hợp:
+) TH1: \(\frac{1}{3}-x<0\) và \(\frac{2}{5}-x>0\)
=> \(\frac{1}{3}\) < x và \(\frac{2}{5}\) > x <=> \(\frac{1}{3}\) < x < \(\frac{2}{5}\)
+) TH2: \(\frac{1}{3}-x>0\) và \(\frac{2}{5}-x<0\)
=> \(\frac{1}{3}\)> x và \(\frac{2}{5}\) < x . Điều này không xảy ra
Vậy \(\frac{1}{3}\) < x < \(\frac{2}{5}\)

a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.
Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:
\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)
b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2 (1)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)

1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10