K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9

Bước 1: Viết lại phương trình cho rõ hơn

Ta có:
\(5 \times 2^{y} = 2^{x + 1} - 123\)

Chúng ta cần tìm các cặp số \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình này.


Bước 2: Phân tích phương trình

  • \(2^{x + 1}\) là một lũy thừa của 2.
  • \(2^{y}\) cũng là một lũy thừa của 2.

Vì thế, ta có thể viết lại:
\(2^{x + 1} = 5 \times 2^{y} + 123\)

Bước 3: Khám phá các giá trị khả thi

  • Để đảm bảo \(2^{x + 1}\) là một lũy thừa của 2, thì vế trái là một số mũ của 2.
  • Vế phải là tổng của \(5 \times 2^{y}\) và 123, trong đó \(5 \times 2^{y}\) là một số chẵn, còn 123 là số lẻ.

Lưu ý:

  • \(5 \times 2^{y}\) luôn là số chẵn (vì \(2^{y}\) là chẵn trừ khi \(y = 0\), khi \(2^{0} = 1\), thì \(5 \times 1 = 5\) là số lẻ).
  • Vì vậy, ta cần xem xét khả năng \(y = 0\) để biết rõ hơn.

Bước 4: Thử các giá trị của \(y\)

Trường hợp 1: \(y = 0\)

\(5 \times 2^{0} = 5\)
Phương trình trở thành:
\(5 = 2^{x + 1} - 123\)
\(2^{x + 1} = 128\)
\(128 = 2^{7}\):
\(x + 1 = 7 \Rightarrow x = 6\)
Vậy, cặp nghiệm là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)


Trường hợp 2: \(y = 1\)

\(5 \times 2^{1} = 10\)
Phương trình:
\(10 = 2^{x + 1} - 123\)
\(2^{x + 1} = 133\)
Không phải là một lũy thừa của 2 (vì \(2^{7} = 128\)\(2^{8} = 256\)), nên không có nghiệm.

Trường hợp 3: \(y = 2\)

\(5 \times 2^{2} = 20\)
\(20 = 2^{x + 1} - 123\)
\(2^{x + 1} = 143\)
Không phải là lũy thừa của 2.

Các giá trị của \(2^{y}\) tăng dần, và \(5 \times 2^{y}\) sẽ là các số chẵn, cộng 123 (số lẻ) sẽ luôn cho ra tổng là số lẻ.

Vì vậy, \(2^{x + 1}\) phải là số lẻ, nhưng lũy thừa của 2 là số chẵn (trừ \(2^{0} = 1\)), và chỉ có \(2^{0} = 1\) là số lẻ.


Bước 5: Kiểm tra \(y = 0\) — đã có nghiệm

Chúng ta đã thấy khi \(y = 0\), \(x = 6\).


Kết luận:

  • Nghiệm duy nhất của phương trình là:
    \(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)
13 tháng 9

helpppp

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)

\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

14 tháng 9

loading...

a) Do MN ⊥ OA tại H (gt)

⇒ H là trung điểm của MN

Tứ giác OMAN có:

H là trung điểm của OA (gt)

H là trung điểm của MN (cmt)

⇒ OMAN là hình thoi

⇒ OA là tia phân giác của ∠MON (1)

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ OB là tia phân giác của ∠MON (2)

Từ (1) và (2) suy ra O, A, B thẳng hàng

b) Do OMAN là hình thoi (cmt)

⇒ AM = OA = OM = R

⇒ ∆OAM là tam giác đều

⇒ ∠MOA = 60⁰

⇒ ∠MOB = 60⁰

Do BM là tiếp tuyến của (O) (gt)

⇒ BM ⊥ OM

⇒ ∆OMB vuông tại M

⇒ ∠OBM + ∠MOB = 90⁰

⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ BO là tia phân giác của ∠MBN

⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰

Do BM và BN là hai tiếp tuyến của (O) (gt)

⇒ BM = BN

∆BMN có:

BM = BN (cmt)

⇒ ∆BMN cân tại B

Mà ∠MBN = 60⁰ (cmt)

⇒ ∆BMN là tam giác đều

c) ∆OMB vuông tại M (cmt)

Do MN ⊥ OA tại H (gt)

⇒ MH ⊥ OB

⇒ MH là đường cao của ∆OMB

⇒ OH.OB = OM²

Hay OH.OB = R²

d) ∆OMB vuông tại B (cmt)

loading...

⇒ BM = OM.tanMOB

= R.tan30⁰

loading...

a: Xét (O) có

BD,BA là các tiếp tuyến

Do đó: BD=BA

=>B nằm trên đường trung trực của AD(1)

Ta có: OD=OA

=>O nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra OB là đường trung trực của AD

=>OB⊥AD
Xét (O) có

CA,CE là các tiếp tuyến

Do đó: CA=CE
=>C nằm trên đường trung trực của AE(3)

Ta có: OA=OE

=>O nằm trên đường trung trực của AE(4)

Từ (3),(4) suy ra OC là đường trung trực của AE
=>OC⊥AE
b: BD+CE

=BA+AC

=BC


9 tháng 9

Olm chào em, với câu hỏi này em cần đăng kèm cả hình, có như vậy, thầy cô mới có thể hỗ trợ em được tốt nhất, em nhé.

16 tháng 9

Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng AB

Do (d) đi qua A nên thay tọa độ điểm A(3; 4) vào (d) ta được:

3a + b = 4

b = 4 - 3a (1)

Do (d) đi qua điểm B nên thay tọa độ điểm B(5; 2) vào (d) ta được:

5a + b = 2 (2)

Thế (1) vào (2) ta được:

5a + 4 - 3a = 2

2a = 2 - 4

2a = -2

a = -2 : 2

a = -1

Thế a = -1 vào (1) ta được:

b = 4 - 3.(-1) = 7

Vậy phương trình đường thẳng AB là:

(d): y = -x + 7

Bài 3:

a: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOB và H là trung điểm của BC

b: OH là phân giác của góc AOB

=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)

Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)

=>\(\frac{OH}{R}=cos60=\frac12\)

=>\(OH=\frac{R}{2}\)

ΔOHA vuông tại H

=>\(HO^2+HA^2=OA^2\)

=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)

=>\(HA=\frac{R\sqrt3}{2}\)

H là trung điểm của AB

=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)

Diện tích tam giác OAB là:

\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)

c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)

nên ΔCOA đều

=>CA=AC=OC=R

Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC=R

Xét tứ giác OACB có OA=CA=CB=OB

nên OACB là hình thoi

Bài 2:

a: ΔOAB cân tại O

mà OM là đường trung tuyến

nên OM⊥AB tại M
b: ΔOAB vuông tại O

=>\(OA^2+OB^2=AB^2\)

=>\(AB^2=R^2+R^2=2R^2\)

=>\(AB=R\sqrt2\)

ΔOAB vuông tại O có OM là đường trung tuyến

nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)

Bài 1:

a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,D,C cùng thuộc một đường tròn

b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,E,H cùng thuộc một đường tròn

c: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ED<BC

ADHE nội tiếp đường tròn đường kính AH

=>DE<AH

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)

=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)

Câu 11: x+2y=1

=>x=1-2y=1+1=2

\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)

Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)

=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)

\(3\cdot x_0^{2020}+2\cdot y_0\)

\(=3\cdot1^{2020}+2\cdot2=3+4=7\)

Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì

\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)

=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)

=>m=2

Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)

=>\(\frac{2-a}{a}=1\)

=>2-a=a

=>a=1


16 giờ trước (14:43)

Bài 6:

a: ĐKXĐ: x∉{0;2}

Ta có: \(\frac{1}{x}+\frac{2}{x\left(x-2\right)}=\frac{x+2}{x-2}\)

=>\(\frac{x-2}{x\left(x-2\right)}+\frac{2}{x\left(x-2\right)}=\frac{x\left(x+2\right)}{x\left(x-2\right)}\)

=>\(x-2+2=x\left(x+2\right)\)

=>x(x+2)=x

=>x(x+2)-x=0

=>x(x+2-1)=0

=>x(x+1)=0

=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x+1=0\end{array}\right.\Rightarrow x+1=0\)

=>x=-1(nhận )

b: ĐKXĐ: y∉{0;-5;5}

Ta có: \(\frac{y+5}{y^2-5y}-\frac{y-5}{2y^2+10y}=\frac{y+25}{2y^2-50}\)

=>\(\frac{y+5}{y\left(y-5\right)}-\frac{y-5}{2y\left(y+5\right)}=\frac{y+25}{2\left(y-5\right)\left(y+5\right)}\)

=>\(\frac{2\left(y+5\right)^2}{2y\left(y+5\right)\left(y-5\right)}-\frac{\left(y-5\right)^2}{2y\left(y+5\right)\left(y-5\right)}=\frac{y\left(y+25\right)}{2y\left(y+5\right)\left(y-5\right)}\)

=>\(2\left(y+5\right)^2-\left(y-5\right)^2=y\left(y+25\right)\)

=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)

=>\(y^2+30y+25=y^2+25y\)

=>5y=-25

=>y=-5(loại)

Bài 7:

a: ĐKXĐ: x<>1

\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

=>\(\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4}{x^2+x+1}\)

=>\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

=>\(x^2+x+1+2x^2-5=4\left(x-1\right)\)

=>\(3x^2+x-4=4x-4\)

=>\(3x^2-3x=0\)

=>3x(x-1)=0

=>x(x-1)=0

=>\(\left[\begin{array}{l}x=0\left(nhận\right)\\ x=1\left(loại\right)\end{array}\right.\)

b: ĐKXĐ: x<>2

Ta có: \(\frac{2x^2}{x^3-8}+\frac{x+1}{x^2+2x+4}=\frac{3}{x-2}\)

=>\(\frac{2x^2}{\left(x-2\right)\left(x^2+2x+4\right)}+\frac{\left(x+1\right)}{x^2+2x+4}=\frac{3}{x-2}\)

=>\(\frac{2x^2}{\left(x-2\right)\cdot\left(x^2+2x+4\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

=>\(2x^2+\left(x+1\right)\left(x-2\right)=3\left(x^2+2x+4\right)\)

=>\(2x^2+x^2-x-2=3x^2+6x+12\)

=>6x+12=-x-2

=>7x=-14

=>x=-2(nhận)

c: ĐKXĐ: x∉{1;4}

Ta có: \(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)

=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5}{x-1}=\frac{2}{x-4}\)

=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)

=>2x+1+5(x-4)=2(x-1)

=>2x+1+5x-20=2x-2

=>7x-19=2x-2

=>5x=17

=>\(x=\frac{17}{5}\) (nhận)