
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Do MN ⊥ OA tại H (gt)
⇒ H là trung điểm của MN
Tứ giác OMAN có:
H là trung điểm của OA (gt)
H là trung điểm của MN (cmt)
⇒ OMAN là hình thoi
⇒ OA là tia phân giác của ∠MON (1)
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ OB là tia phân giác của ∠MON (2)
Từ (1) và (2) suy ra O, A, B thẳng hàng
b) Do OMAN là hình thoi (cmt)
⇒ AM = OA = OM = R
⇒ ∆OAM là tam giác đều
⇒ ∠MOA = 60⁰
⇒ ∠MOB = 60⁰
Do BM là tiếp tuyến của (O) (gt)
⇒ BM ⊥ OM
⇒ ∆OMB vuông tại M
⇒ ∠OBM + ∠MOB = 90⁰
⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BO là tia phân giác của ∠MBN
⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BM = BN
∆BMN có:
BM = BN (cmt)
⇒ ∆BMN cân tại B
Mà ∠MBN = 60⁰ (cmt)
⇒ ∆BMN là tam giác đều
c) ∆OMB vuông tại M (cmt)
Do MN ⊥ OA tại H (gt)
⇒ MH ⊥ OB
⇒ MH là đường cao của ∆OMB
⇒ OH.OB = OM²
Hay OH.OB = R²
d) ∆OMB vuông tại B (cmt)
⇒ BM = OM.tanMOB
= R.tan30⁰

a: Xét (O) có
BD,BA là các tiếp tuyến
Do đó: BD=BA
=>B nằm trên đường trung trực của AD(1)
Ta có: OD=OA
=>O nằm trên đường trung trực của AD(2)
Từ (1),(2) suy ra OB là đường trung trực của AD
=>OB⊥AD
Xét (O) có
CA,CE là các tiếp tuyến
Do đó: CA=CE
=>C nằm trên đường trung trực của AE(3)
Ta có: OA=OE
=>O nằm trên đường trung trực của AE(4)
Từ (3),(4) suy ra OC là đường trung trực của AE
=>OC⊥AE
b: BD+CE
=BA+AC
=BC


Bước 1: Viết lại phương trình cho rõ hơn
Ta có:
\(5 \times 2^{y} = 2^{x + 1} - 123\)
Chúng ta cần tìm các cặp số \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình này.
Bước 2: Phân tích phương trình
- \(2^{x + 1}\) là một lũy thừa của 2.
- \(2^{y}\) cũng là một lũy thừa của 2.
Vì thế, ta có thể viết lại:
\(2^{x + 1} = 5 \times 2^{y} + 123\)
Bước 3: Khám phá các giá trị khả thi
- Để đảm bảo \(2^{x + 1}\) là một lũy thừa của 2, thì vế trái là một số mũ của 2.
- Vế phải là tổng của \(5 \times 2^{y}\) và 123, trong đó \(5 \times 2^{y}\) là một số chẵn, còn 123 là số lẻ.
Lưu ý:
- \(5 \times 2^{y}\) luôn là số chẵn (vì \(2^{y}\) là chẵn trừ khi \(y = 0\), khi \(2^{0} = 1\), thì \(5 \times 1 = 5\) là số lẻ).
- Vì vậy, ta cần xem xét khả năng \(y = 0\) để biết rõ hơn.
Bước 4: Thử các giá trị của \(y\)
Trường hợp 1: \(y = 0\)
\(5 \times 2^{0} = 5\)
Phương trình trở thành:
\(5 = 2^{x + 1} - 123\)
\(2^{x + 1} = 128\)
Vì \(128 = 2^{7}\):
\(x + 1 = 7 \Rightarrow x = 6\)
Vậy, cặp nghiệm là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)
Trường hợp 2: \(y = 1\)
\(5 \times 2^{1} = 10\)
Phương trình:
\(10 = 2^{x + 1} - 123\)
\(2^{x + 1} = 133\)
Không phải là một lũy thừa của 2 (vì \(2^{7} = 128\) và \(2^{8} = 256\)), nên không có nghiệm.
Trường hợp 3: \(y = 2\)
\(5 \times 2^{2} = 20\)
\(20 = 2^{x + 1} - 123\)
\(2^{x + 1} = 143\)
Không phải là lũy thừa của 2.
Các giá trị của \(2^{y}\) tăng dần, và \(5 \times 2^{y}\) sẽ là các số chẵn, cộng 123 (số lẻ) sẽ luôn cho ra tổng là số lẻ.
Vì vậy, \(2^{x + 1}\) phải là số lẻ, nhưng lũy thừa của 2 là số chẵn (trừ \(2^{0} = 1\)), và chỉ có \(2^{0} = 1\) là số lẻ.
Bước 5: Kiểm tra \(y = 0\) — đã có nghiệm
Chúng ta đã thấy khi \(y = 0\), \(x = 6\).
Kết luận:
- Nghiệm duy nhất của phương trình là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)


ĐKXĐ: x∉{2;-1;-2}
Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)
=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)
=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)
=>\(2x^3+8x=x^3-4x-x^2+4\)
=>\(x^3+x^2+12x-4=0\)
=>x≃0,32(nhận)

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)
=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)
Câu 11: x+2y=1
=>x=1-2y=1+1=2
\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)
Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)
=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)
\(3\cdot x_0^{2020}+2\cdot y_0\)
\(=3\cdot1^{2020}+2\cdot2=3+4=7\)
Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì
\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)
=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)
=>m=2
Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)
=>\(\frac{2-a}{a}=1\)
=>2-a=a
=>a=1

Bài 3:
a: ΔOAB cân tại O
mà OH là đường cao
nên OH là phân giác của góc AOB và H là trung điểm của BC
b: OH là phân giác của góc AOB
=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)
Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)
=>\(\frac{OH}{R}=cos60=\frac12\)
=>\(OH=\frac{R}{2}\)
ΔOHA vuông tại H
=>\(HO^2+HA^2=OA^2\)
=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)
=>\(HA=\frac{R\sqrt3}{2}\)
H là trung điểm của AB
=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)
Diện tích tam giác OAB là:
\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)
c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)
nên ΔCOA đều
=>CA=AC=OC=R
Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)
nên ΔBOC đều
=>BO=OC=BC=R
Xét tứ giác OACB có OA=CA=CB=OB
nên OACB là hình thoi
Bài 2:
a: ΔOAB cân tại O
mà OM là đường trung tuyến
nên OM⊥AB tại M
b: ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=R^2+R^2=2R^2\)
=>\(AB=R\sqrt2\)
ΔOAB vuông tại O có OM là đường trung tuyến
nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)
Bài 1:
a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,D,C cùng thuộc một đường tròn
b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>A,D,E,H cùng thuộc một đường tròn
c: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ED<BC
ADHE nội tiếp đường tròn đường kính AH
=>DE<AH

Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng AB
Do (d) đi qua A nên thay tọa độ điểm A(3; 4) vào (d) ta được:
3a + b = 4
b = 4 - 3a (1)
Do (d) đi qua điểm B nên thay tọa độ điểm B(5; 2) vào (d) ta được:
5a + b = 2 (2)
Thế (1) vào (2) ta được:
5a + 4 - 3a = 2
2a = 2 - 4
2a = -2
a = -2 : 2
a = -1
Thế a = -1 vào (1) ta được:
b = 4 - 3.(-1) = 7
Vậy phương trình đường thẳng AB là:
(d): y = -x + 7
helpppp
Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)