tìm ước chung lớn nhất của a và a + 7 với a € N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
Lời giải:
a. $ƯC(a,b)\in Ư(36)=\left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 9; \pm 12; \pm 18; \pm 36\right\}$
b. $Ư(a,b)\in Ư(50)=\left\{\pm 1; \pm 2; \pm 5; \pm 10; \pm 25; \pm 50\right\}$
Suy ra ước có 2 chữ số của $a,b$ là:
$\left\{\pm 10; \pm 25; \pm 50\right\}$
cho ước chung lớn nhất của m và n =1
a,ước chung lớn nhất của m+n và n
b,ước chung lớn nhất m.n và m+n
Phân tích thành tích các thừa số nguyên tố: \(225=3^2.5^2,60=2^2.3.5\)
\(ƯCLN\left(225,60\right)=3.5=15\)
\(ƯC\left(225,60\right)=Ư\left(15\right)=\left\{-15,-5,-3,-1,1,3,5,15\right\}\)
\(BCNN\left(225,60\right)=2^2.3^2.5^2=900\)
\(BC\left(225,60\right)=B\left(900\right)\)
Gọi ƯCLN (a; a+7)=d
=>\(\orbr{\begin{cases}a+7⋮d\\a⋮d\end{cases}}\Rightarrow\left(a+7\right)-a⋮d\)
\(\Rightarrow7⋮d\)
\(\Rightarrow d\in1;7\)
=> \(ƯCLN\left(a;a+7\right)=7\)