Cho n là số nguyên dương :CMR trong hai số
a=\(2^{2n+1}+2^{n+1}+1\) và \(b=2^{2n+1}-2^{n+1}+1\)có một số không chia hết cho 5
Giúp mk nha,cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho n là số nguyên dương.CMR trong hai số:
a=22n+1+2n+1+1
b=22n+1-2n+1+1
có một số không chia hết cho 5
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Giả sử cả 2 số đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 2n + 1 + 1 - (22n + 1 - 2n + 1 + 1) = 2.2n+1 chia hết cho 5
=> 2n+2 chia hết cho 5 . Điều này không xảy ra vì 2n+2 không tận cùng bằng 0 ; 5
=> Phải có ít nhất a hoặc b không chia hết cho 5
a = 22n+1 + 2n+1 + 1 = (22)n.21 + 2n.21 + 1 = 4n.2 + 2n.2 + 1 = 2.(4n.2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) + 1 là số lẻ mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 , do đó a không chia hết cho 5.
b = 22n+1 - 2n+1 + 1 = (22)n.21 - 2n.21 + 1 = 4n.2 - 2n.2 + 1 = 2.(4n-2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) - 1 là số lẻ, mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 do đó b không chia hết cho 5.
Suy ra điều phải chứng minh