K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

23 tháng 5 2015

Giả sử cả 2 số đều chia hết cho 5

=> a - b chia hết cho 5

=>  22n + 1 + 2n + 1 + 1  - (22n + 1 - 2n + 1 + 1) = 2.2n+1 chia hết cho 5

=> 2n+2 chia hết cho 5 . Điều này không xảy ra vì 2n+2 không tận cùng bằng 0 ; 5

=> Phải có ít nhất a hoặc b không chia hết cho 5

23 tháng 5 2015

a = 22n+1 + 2n+1 + 1 = (22)n.21 + 2n.21 + 1 = 4n.2 + 2n.2 + 1 = 2.(4n.2n) + 1 

Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) + 1 là số lẻ mà 4n.2n \(\ne\) (... 0) nên  2.(4n.2n) + 1 \(\ne\) 0   , do đó a không chia hết cho 5.

b = 22n+1 - 2n+1 + 1 = (22)n.21 - 2n.21 + 1 = 4n.2 - 2n.2 + 1 = 2.(4n-2n) + 1 

Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) - 1 là số lẻ, mà 4n.2n \(\ne\) (... 0) nên  2.(4n.2n) + 1 \(\ne\) 0 do đó b không chia hết cho 5.

                    Suy ra điều phải chứng minh