Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
\(2^{2n}\left(2^{2n+1}-1\right)-1=2.16^n-4^n-1\)
#Chứng minh quy nạp: \(2.16^n-4^n-1\) chia hết cho 9 (1)
+Với n = 1; 2; 3 thì (1) đúng.
+Giả sử (1) đúng với n = k , tức là \(2.16^k-4^k-1\)\(\left(k\ge1\right)\) chia hết cho 9.
Ta chứng minh (1) đúng với n = k+1, tức là chứng minh số sau chia hết cho 9:
\(2.16^{k+1}-4^{k+1}-1=16.2.16^k-4.4^k-1\)
\(=16\left(2.16^k-4^k-1\right)+12.4^k+15\)
\(\text{Mà }2.16^k-4^k-1\text{ chia hết cho 9 nên ta cần chứng minh }12.4^k+15\text{ chia hết cho 9, hay }4.4^k+5\text{ chia hết cho 3}\)
#Quy nạp phụ: \(4.4^n+5\)chia hết cho 3 (2)
+n = 1; 2; 3 thì (2) đúng
+Giả sử (2) đúng với n = k, tức là 4.4k + 5 chia hết cho 3.
Ta chứng minh (2) đúng với n = k+1, tức là chứng minh số sau chia hết cho 3:
4.4k+1 + 5 = 4.4.4k + 5 = 4(4.4k + 5) - 15 chia hết cho 3 vì 4.4k + 5 chia hết cho 3 và 15 chia hết cho 3.
Vậy 4.4n + 5 chia hết cho 3 với mọi n.
=> 12.4k + 15 chia hết cho 9
Mà 2.16k - 4k - 1 chia hết cho 9
=> 16.(2.16k - 4k -1) + 12.4k + 15 chia hết cho 9
Vậy \(2.16^n-4^n-1\) chia hết cho 9 với mọi số tự nhiên n (đpcm)
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)