K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Ta có : \(\frac{2002}{2002}=1\)

Ta có : \(\frac{2003}{2004}< 1\)

\(\Rightarrow\frac{2002}{2002}>\frac{2003}{2004}\)

Ta thấy:

\(\frac{2002}{2002}=1\)

\(\frac{2003}{2004}< 1\)

\(\Rightarrow\frac{2002}{2002}>\frac{2003}{2004}\)

Vậy \(\frac{2002}{2002}>\frac{2003}{2004}\)

22 tháng 9 2023

𝓣𝓪 𝓬𝓸́: \(1-\dfrac{2002}{2003}=\dfrac{1}{2003}\)

            \(1-\dfrac{2003}{2004}=\dfrac{1}{2004}\)  

𝓓𝓸 \(\dfrac{1}{2003}>\dfrac{1}{2004}\) 

𝓷𝓮̂𝓷 \(\dfrac{2002}{2003}>\dfrac{2003}{2004}\)

𝓥𝓪̣̂𝔂 \(\dfrac{2002}{2003}>\dfrac{2003}{2004}\)

23 tháng 9 2023

Ta có :

\(\dfrac{2002}{2003}< \dfrac{2002+1}{2003+1}=\dfrac{2003}{2004}\)

Vậy \(\dfrac{2002}{2003}< \dfrac{2003}{2004}\)

21 tháng 8 2015

a) 534 phần 215 < 533 phần 214

b)-325 phần364 > -326 phần 365

c) 2002 phần 2003 < 2003 phần 2004

d) -2002 phần 2003 > 2005 phần -2004

27 tháng 2 2016

3.

A:

20032003+1=20032002.2003+1=20032002+1

20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)  

B:

20032002+1=20032002+1

20032003+1=20032002.2003+1

Suy ra: A=B

29 tháng 6 2015

a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)

\(1-\frac{2003}{2004}=\frac{1}{2004}\)

Vì \(\frac{1}{2003}>\frac{1}{2004}\)

\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)

b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)

\(\frac{-2002}{2003}<1\)

\(\Rightarrow\frac{-2002}{2003}<\frac{-2005}{-2004}\)

20 tháng 6 2017
$$hêhê
23 tháng 5 2016
Vì 2001/2002 < 1 Mà từ 2001 đến 2015 có 14 số. Mà 1 * 15 = 15 mà đây mới có 14 số nên A < 15 P/s: bạn nhớ sửa lại lời giải một tí nha. Lời giải của mình không hay mấy. Chúc bạn học tốt!
30 tháng 1 2016

làm ơn tách ra giùm mk

30 tháng 1 2016

nguyên một hàng mk đọc ko hỉu????????????

không hiểu......>><

19 tháng 10 2015

2002/2001>:,2003/2002>1.....

CÓ 8 PHÂN SỐ MỖI PHÂN SỐ CÓ GIÁ TRỊ LỚN HƠN 1 VÂY TỔNG CỦA 8 PHÂN SỐ LỚN HƠN 1 SẼ LỚN HƠN 8.

 

15 tháng 5 2017

\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)

\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)

\(A>8\)