K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

a) Vì n+4 chia hết cho n,n chia hết cho n

Suy ra 4 chia hết cho n nên n là ước của 4

Suy ra n thuộc {1;-1;2;-2;-4;4}

Vậy ___________

b)Vì n chia hết cho n-2 , n-2 chia hết cho n-2

nên n- n + 2 chia hết cho n-2

hay 2 chiaa hết cho n-2

Suy ra n-2 là ước của 2

Kéo theo n-2 thuộc {1;-1;2;-2}

Suy ra n thuộc {3;1;4;0}

Vậy ____________

c)Vì 2n + 7 chia hết cho n+3 nên 2n + 6 +1 chia hết cho n+3

Vì 2n + 6 = 2.(n+3) chia hết cho n+3

Suy ra 1 chia hết cho n+3

Suy ra n+3 là ước của 1

n+3 thuộc {1;-1}

Suy ra n thuộc {-2;-4}

Vậy ________

30 tháng 6 2023

a, Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có:

a +2 -7 -1 1 7
 -9 -3 -1 5

Theo bảng trên ta có:

\(a\) \(\in\) { -9; -3; -1; 5}

b, 2a + 1 \(\in\) Ư(12)

    Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

lập bảng ta có:

2a+1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12

a

 

-11/2

loại

-7/2

loại

-5/2

loại

-2

nhận

-3/2

loại

-1

nhận

0

nhận

1/2

loại

1

nhận

3/2

loại

5/2

loại

11/2

loại

 

Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:

\(\in\) {- 2; - 1; 0; 1}

 

30 tháng 6 2023

n + 5 \(⋮\) n - 2

n - 2 + 7 ⋮ n - 2

            7 ⋮ n -2

Ư(7) ={ -7; -1; 1; 7}

Lập bảng ta có:

n - 2 -7 -1 1 7
n -5 1 3 9

Theo bảng trên ta có:

\(\in\) { -5; 1; 3; 9}

 

 

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

22 tháng 10 2021

a: Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

5 tháng 2 2022

có vẻ hơi ngắn

 

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

7 tháng 10 2023

a) 2n + 11 chia hết cho n + 3

⇒ 2n + 6 + 5 chia hết cho n + 3

⇒ 2(n + 3) + 5 chia hết cho n + 3 

⇒ 5 chia hết cho n + 3

⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5} 

⇒ n ∈ {-2; -4; 2; -8} 

b) n + 5 chia hết cho n - 1

⇒ n - 1 + 6 chia hết cho n - 1 

⇒ 6 chia hết cho n - 1

⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6} 

⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5} 

c) 3n + 10 chia hết cho n + 2 

⇒ 3n + 6 + 4 chia hết cho n + 2

⇒ 3(n + 2) + 4 chia hết cho  n + 2

⇒ 4 chia hết cho n + 2

⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4} 

⇒ n ∈ {-1; -3; 0; -4; 2; -6} 

d) 2n + 7 chia hết cho 2n + 1

⇒ 2n + 1 + 6 chia hết cho 2n + 1

⇒ 6 chia hết cho 2n + 1 

⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}

Mà: n ∈ N ⇒ 2n + 1 là số lẻ 

⇒ 2n + 1 ∈ {1; -1; 3; -3} 

⇒ n ∈ {0; -1; 1; -2} 

7 tháng 10 2023

ai giúp mình với!!!

 

a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 21-15-5
n-1-33-7

b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng 

n - 21-17-7
n319-5

c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)

\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng

n + 11-111-11
n0-210-12
26 tháng 6 2020

d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên

<=> \(3n+7⋮2n+3\)

<=> 2(3n + 7) \(⋮\) 2n + 3

<=> 6n + 14 \(⋮\)2n + 3

<=> 3(2n + 3) + 5 \(⋮\)2n + 3

<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)

<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}

Lập bảng:

2n + 3 1 -1 5 -5
  n -1 -2 1 -4

Vậy ....

28 tháng 3 2019

quên nữa n thuộc Z tìm n

30 tháng 11 2023

Viết  lời giải ra giúp mình nhé !