K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Ta có NP=MN=8cm ( tam giác vuông cân) Mà vuông cân Nên góc M= góc P=45 độ

=> tam giác NMP cân Mà tam giác Đó cân tại H =>MN^2=NH^2+MH^2

MN^2=2.MH^2 hay 8^2=2.MH^2=>64=2.MH^2=>MH^2=32

rùi tự tính ra các cạnh kia dễ rùi

Mik chưa lm đc câu c vì ý 2 câu b bị sai hay s ý.

25 tháng 2 2020

câu nào vậy đúng hết mà

6 tháng 5 2017

A B C H K I 1 2

a.Vì tam giác ABC cân tại A nên AH vừa là đường cao vừa là trung tuyến

=> HB=HC

b. Vì HB=HC=10:2=5(cm)

Áp dụng định lý Pi-ta -go vào tam giác AHB có

\(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

c. Xét 2 tam giác AHK và tam giác AHI có:

Vì AH là đường cao mà tam giác ABC cân tại A nên AH cx là đường phân giác:

nên ta có: \(\widehat{A}_1=\widehat{A_2}\)

AH chung

=> tam giác AHK=tam giác AHI(c.g.c)

=>HI=HK(2 cạnh tương ứng )

d. Xl nha câu d quên cách ch/m rồi..

22 tháng 4 2015

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

d) ('Mình ko biết')

28 tháng 7 2016

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

6 tháng 2 2021

Áp dụng định lý Pytago : 

\(MP=\sqrt{NP^2-MN^2}=\sqrt{7.5^2-4.5^2}=6\left(cm\right)\)

6 tháng 2 2021

Xét \(\Delta MNP\) vuông tại M (gt): 

\(NP^2=MN^2+MP^2\) (định lý Pytago)

\(\Rightarrow MP^2=NP^2-MN^2\\ \Rightarrow MP=\sqrt{NP^2-MN^2}=\sqrt{7,5^2-4,5^2}=6\left(cm\right)\)

11 tháng 6 2021