Cho tam giác ABC có góc B > C. Tia phân giác của góc A cắt BC ở D. Chứng minh rằng BD < DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyễn Như Quỳnh - Toán lớp 7 - Học toán với OnlineMath
Xét Tam giác ABC : Góc B lớn hơn góc C → AC > AB
Trên tia AC lấy điểm F sao cho AF =AB
Xét tam giác ADE và tam giác ADB có : AD chung
AF =AB ( cách vẽ )
Góc DAE = Góc DAB ( gt)
→ Tam giác ADE = Tam giác ADB (c.g.c) (1)
Từ (1) → Góc ADB = Góc ADE ( 2 góc tương ứng )
Lại có : Góc ADB là góc ngoài tại D của tam giác ADC → ADB > C
→ ADE > C
Mà : Góc DEC là góc ngoài tại E của tam giác ADE → DEC > ADE
→ DEC > C
Xét tam giác DEC có : DEC > C → DC > DE
Mặt khác từ (1) → DE =DB ( 2 cạnh tương ứng )
→ DC > DB
→ ĐPCM
a, xét tam giác ABE và tam giác FBE có : BE chung
góc ABE = góc FBE do BD là phân giác của góc ABC (gt)
góc AEB = góc FEB = 90
=> tam giác ABE = tam giác FBE (ch-gn)
=> AB = BF (đn)
=> tam giác ABF cân tại B (đn)
b, xét tam giác ABD và tam giác FBD có : BD chung
góc ABD= góc FBD (Câu a)
AB = FB (Câu a)
=> tam giác ABD = tam giác FBD (c-g-c)
=> góc DFB = góc DAB (đn)
góc DAB = 90
=> góc DFB = 90
=> DF _|_ BC
c, có tam giác ABD = tam giác FBD (Câu b)
=> AD = DF (đn)
=> tam giác DFA cân tại D (đn)
=> góc DFA = góc DAF (đn) (1)
góc DF _|_ BC
AH _|_ BC
=> DF // AH (tc)
=> góc DFA = góc FAH (so le trong) và (1)
=> góc DAF = góc FAH
có AF nằm giữa AC và AH
=> AF là phân giác của góc HAC (đn)
d, cm : tam giác CDF = tam giác IDA (cgv-gnk)
=> IA = CF
CM : BC = BI
CM : tam giác DBI = tam giác DBC
=> ...
a, Ta có: Góc AEB = 90o (AE vuông góc với BD tại E) , Góc BEF = 90o (AE vuông góc với BD tại E)
Xét tam giác ABE và tam giác FBE, có
BE chung
Góc ABE = FBE (BD là phân giác của góc ABF)
Góc AEB = BEF (cùng = 90o)
=> Tam giác ABE = FBE (g.c.g)
=> AB = BF (2 cạnh tương ứng)
=> Tam giác ABF cân tại B (Định nghĩa tam giác cân)
góc B>góc C
=>AB<AC
Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
mà AB<AC
nên DB<DC
A B C D E x
vì \(\widehat{B}>\widehat{C}\)nên AC > AB
Trên cạnh AC lấy điểm E sao cho AB = AE thì E nằm giữa A và C
\(\Delta ADB=\Delta ADE\)( c.g.c ) nên DB = DE và \(\widehat{DEC}=\widehat{CBx}\)
mà \(\widehat{DBx}>\widehat{C}\)nên \(\widehat{DEC}>\widehat{C}\), do đó : DC > DE
Vậy BD < DC