Tìm x, biết :
\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)
Giải được thì tick ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`3^3 * x^2 - 2^4 * x^2 = 8^2 * 5 - 4^2 * 3^2`
`=> x^2 . (3^3 - 2^4) = 2^6 . 5 - 2^4 . 3^2`
`=> x^2 . 11 = 2^4 . (2^2 . 5 - 3^2)`
`=> x^2 . 11 = 2^4 . 11`
`=> x^2 . 11 - 2^4 . 11 = 0`
`=> 11 . (x^2 - 16) = 0`
`=> x^2 - 16 = 0`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = `\(\pm4\)
Vậy, `x \in`\(\left\{4;-4\right\}\)
_____
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2\cdot2^2=4^2\cdot3\)
`=>`\(\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+\left(3\cdot2\right)^2=48\)
`=>`\(\dfrac{23}{108}\cdot x+6^2=48\)
`=>`\(\dfrac{23}{108}x=48-6^2\)
`=>`\(\dfrac{23}{108}x=48-36\)
`=>`\(\dfrac{23}{108}x=12\)
`=>`\(x=\dfrac{1296}{23}\)
Vậy, `x = `\(\dfrac{1296}{23}\)
\(3^3.x^2-2^4.x^2=8^2.5-4^3.3^2\)
\(\Leftrightarrow x^2\left(27-16\right)=2^6.5-2^6.9\)
\(\Leftrightarrow11x^2=2^6.\left(5-9\right)=-4.2^6=-2^8\)
\(\Leftrightarrow x^2=-\dfrac{2^6}{11}< 0\)
\(\Rightarrow x\in\varnothing\)
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2.2^2=4^2.3\)
\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+36=48\)
\(\Leftrightarrow\dfrac{23}{108}x=12\Leftrightarrow x=\dfrac{12.108}{23}=\dfrac{1296}{23}\)
M=\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{17}{8^2.9^2}+\dfrac{19}{9^2.10^2}\)
=\(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{17}{64.81}+\dfrac{19}{81.100}\)
=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{81}+\dfrac{1}{81}-\dfrac{1}{100}\)
=1-\(\dfrac{1}{100}\)=\(\dfrac{99}{100}\)<\(\dfrac{100}{100}=1\)
a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
\(\Leftrightarrow\dfrac{1}{4}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{\left(x-1\right)x}\right)=\dfrac{1}{8}\) ( đk x khác 0 , x khác 1)
\(\Leftrightarrow\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{x-1}-\dfrac{1}{x}\right)=\dfrac{1}{8}\)
\(\Leftrightarrow1-\dfrac{1}{x}=\dfrac{1}{2}\)
=> x =2 ( tm)
1/
\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)
\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
Phương trình đã cho tương đương:
\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
\(\Leftrightarrow503x=2012\)
\(\Leftrightarrow x=4\)
2/
\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)
\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)
3/
Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(=2.\frac{n+1}{n+2}
1. 25 : 5,7 = 250/57
2. 30:2.8.4 = 480
3. 20:2^2.14= 70
4. 125:5^3.170= 170
5. 64:2^5.30.4=240
6. (25:5^2.30): 15.7=14
bạn à! Nhiều quá mình ko làm hết được. sorry nha.^-^
a) \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)
B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)
BÀI 2:
A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)
\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)
\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)
\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)
b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)
\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)
ngoặc 1 có 99 số hạng x
\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3.\frac{99}{100}=1\)
\(\Leftrightarrow99x=1+\frac{3.99}{100}\)
\(\Leftrightarrow99x=\frac{397}{100}\)
\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)
\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)
\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....8\right).\left(1.2.3.4.....8\right)\)
\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)
\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)
\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)
\(\Leftrightarrow\)\(x=1\)
Vậy \(x=1\)
\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)
\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....16\right).\left(1.2.3.4.....16\right)\)
\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)
\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)
\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)
\(\Leftrightarrow\)\(x=1\)
Vậy \(x=1\)
Vậy