Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)
B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)
BÀI 2:
A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)
\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)
\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)
\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)
b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)
\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)
ngoặc 1 có 99 số hạng x
\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3.\frac{99}{100}=1\)
\(\Leftrightarrow99x=1+\frac{3.99}{100}\)
\(\Leftrightarrow99x=\frac{397}{100}\)
\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)
\(A=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{19}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Chúc bạn học tốt+-*/
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)
Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)
\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)
\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)
Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)
\(\Leftrightarrow8x-8=4\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)
Vậy không có x thỏa mãn yêu cầu đề bài
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
TL:
\(\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{\left(2x-2\right)2x}\right)=\frac{1}{8}\)
\(\frac{1}{2}-\frac{1}{4x}=\frac{1}{8}\)
\(\frac{1}{4x}=\frac{3}{8}\)
=>x=2/3
hc tốt
\(a,\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
\(\Leftrightarrow\left(19x+50\right):14=5^2-4^2\)
\(\Leftrightarrow\left(19x+50\right):14=9\)
\(\Leftrightarrow19x+50=126\)
\(\Leftrightarrow19x=76\Leftrightarrow x=4\)
b) x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 30 ) = 1240
x + x + 1 + x + 2 + ... + x + 30 = 1240
( x + x + ... + x ) + ( 1 + 2 + ... + 30 ) = 1240
Số số hạng là : ( 30 - 1 ) : 1 + 1 = 30 ( số )
Tổng là : ( 30 + 1 ) . 30 : 2 = 465
=> 31x + 465 = 1240
=> 31x = 775
=> x = 25
Vậy........
\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)
\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....8\right).\left(1.2.3.4.....8\right)\)
\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)
\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)
\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)
\(\Leftrightarrow\)\(x=1\)
Vậy \(x=1\)
\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)
\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....16\right).\left(1.2.3.4.....16\right)\)
\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)
\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)
\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)
\(\Leftrightarrow\)\(x=1\)
Vậy \(x=1\)
Vậy