Chứng minh \(a^2+9b^2+c^2+9,5>2a+12b+4c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dấu ''='' k xảy ra nên chỉ cm đc > hơn thôi nhé
\(a^2+9b^2+c^2+9,5>2a+12b+4c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(9b^2-12b+4\right)+\left(c^2-4c+4\right)>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+0,5>0\) --> luôn đúng
-->đpcm
a2-2a+1+4b2-12b+9+3c2-6c+3+1>0
⇔(a−1)2+(2b−3)2+3(c−1)2+1>0 (luôn đúng)
⇒⇒ BĐT ban đầu đúng
Ta có:
\(a^2+9b^2+c^2+\dfrac{19}{2}-2a-12b-4c=a^2-2a+1+9b^2-12b+4+c^2-4c+4+\dfrac{1}{2}=\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+\dfrac{1}{2}>0\left(1\right)\)Vì (1) luôn đúng nên \(a^2+9b^2+c^2+\dfrac{19}{2}>2a+12b+4c\)
Cần chứng minh \(a^4\ge4b\left(a-b\right)\Leftrightarrow\left(a-2b\right)^2\ge0\) (đúng)
\(a^2\ge4b\left(a-b\right)\Leftrightarrow3a^2\ge12b\left(a-b\right)\left(1\right)\)
Ta chứng minh \(2a^3-3a^2+1\ge0\)
\(\Leftrightarrow2a^3-2a^2-a^2+1\ge0\)
\(\Leftrightarrow2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2-a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(2a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\left(a>0\right)\left(2\right)\)
Vì \(3a^2\ge12b\left(a-b\right)\) theo \(\left(1\right)\)
\(\Rightarrow2a^3-12b\left(a-b\right)+1\ge2a^3-3a^2+1\ge0\) (theo \(\left(2\right)\))
Bài này cũng dễ
Chuyển hết qua 1 vế ta được
a^2+4b^2+3c^2–2a–12b–6c >0
<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0
Vì bất đẳng thức cuối đúng
Nên cái đề