\(a^2+9b^2+c^2+9,5>2a+12b+4c\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Cần chứng minh \(a^4\ge4b\left(a-b\right)\Leftrightarrow\left(a-2b\right)^2\ge0\) (đúng)

\(a^2\ge4b\left(a-b\right)\Leftrightarrow3a^2\ge12b\left(a-b\right)\left(1\right)\)

Ta chứng minh \(2a^3-3a^2+1\ge0\)

\(\Leftrightarrow2a^3-2a^2-a^2+1\ge0\)

\(\Leftrightarrow2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(2a^2-a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\left(a>0\right)\left(2\right)\)

\(3a^2\ge12b\left(a-b\right)\) theo \(\left(1\right)\)

\(\Rightarrow2a^3-12b\left(a-b\right)+1\ge2a^3-3a^2+1\ge0\) (theo \(\left(2\right)\))

27 tháng 5 2017

dòng đầu ghi lộn rồi kìa a4->a2

28 tháng 5 2017

cần 1 lời giải đáp cụ thể

28 tháng 5 2017

trên face có đấy,lên đó mà tìm

3 tháng 6 2021

Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)

Theo bài ra, ta có:

 x+y+z=3

\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Áp dụng kĩ thuật Cau-chy ngược dấu ta có:

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)

Dấu '=' xảy ra <=> a=3;b=2;c=1

3 tháng 6 2021

*Bài khá giống bạn kia :)

Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)

\(\Rightarrow x+y+z=3\)

BĐT cần chứng minh trở thành :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Áp dụng kĩ thuật Cô Si ngược dấu ta có :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\) 

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

2 tháng 6 2021
Chịu thôi hoho
2 tháng 6 2021

Với \(a>b>c:\hept{\begin{cases}\frac{2a^2}{a-b}\ge\frac{2a^2-2b^2}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)}{a-b}=2a-2b\\\frac{b^2}{b-c}\ge\frac{b^2-c^2}{b-c}=\frac{\left(b-c\right)\left(b+c\right)}{b-c}=b+c\end{cases}}\)

\(\Rightarrow\frac{2a^2}{a-b}+\frac{b^2}{b-c}\ge2a+3b+c\)

Dấu đẳng thức xảy ra \(\Leftrightarrow b=c=0\)(Vô lí với \(b>c\))

Vậy \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)

29 tháng 4 2017

545454785

564657431

68567545

4654856

865449466

20 tháng 10 2017

áp dụng bdt cauchy-schwart dạng engel ta có

\(\frac{x^2}{x+\sqrt{yz}}\)\(+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\) =\(\frac{3^2}{3+\sqrt{yx}+\sqrt{xz}+\sqrt{zy}}\)

áp dụng bdt phụ(bn tự cm nhé ^^) 

\(x+y+z\ge\sqrt{xy}+\sqrt{xz}+\sqrt{yz}\)

\(\Rightarrow\sqrt{xy}+\sqrt{xz}+\sqrt{yz}\le3\)

\(\Rightarrow\frac{3^2}{3+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dau = xảy ra khi và chỉ khi \(x=y=z=1\)