Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dấu ''='' k xảy ra nên chỉ cm đc > hơn thôi nhé
\(a^2+9b^2+c^2+9,5>2a+12b+4c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(9b^2-12b+4\right)+\left(c^2-4c+4\right)>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+0,5>0\) --> luôn đúng
-->đpcm
\(\left(x+1\right)\left(x^2-x-x^2+x-1\right)=-\left(x+1\right)\)
\(\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=-4a^2\)
\(\left(a^2+b^2+c^2+a^2-b^2-c^2\right)\left(a^2+b^2+c^2-a^2+b^2+c^2\right)=2a^2\left(2b^2+2c^2\right)=4a^2b^2+4a^2c^2\)
\(\left(a-5\right)^2\left(a+5\right)^2=\left(a^2-25\right)^2\)
\(\left(3a^3+1\right)^2-9a^2-\left(3a^3+1\right)^2=-9a^2\)
b: =>4a^2-5ab+b^2=0
=>4a^2-4ab-ab+b^2=0
=>(a-b)(4a-b)=0
=>b=4a(loại) hoặc b=a(nhận)
Khi b=a thì \(P=\dfrac{a\cdot a}{4a^2-a^2}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)
đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi
a: \(A=\left(100^2-1\right)\left(100^4+100^2+1\right)=100^6-1\)
b: \(B=\left(\dfrac{1}{5}a-b\right)\left(\dfrac{1}{25}a^2+\dfrac{1}{5}ab+b^2\right)=\left(\dfrac{1}{5}a\right)^3-b^3=\dfrac{1}{125}a^3-b^3\)
c: \(C=\left(2+a\right)\left(4-2a+a^2\right)\left(2-a\right)\left(4+2a+a^2\right)\)
\(=\left(8+a^3\right)\left(8-a^3\right)=64-a^6\)
\(A=\left[\dfrac{a^2-2a+4}{a-2}:\left(a^3+8\right)+\dfrac{a-2}{a^3+8}\cdot\dfrac{a^2-2a+4}{a^2-4}\right]\cdot\left(a^2-4\right)\)
\(=\left[\dfrac{a^2-2a+4}{a-2}\cdot\dfrac{1}{\left(a+2\right)\left(a^2-2a+4\right)}+\dfrac{a-2}{\left(a+2\right)\left(a^2-2a+4\right)}\cdot\dfrac{a^2-2a+4}{a^2-4}\right]\cdot\left(a^2-4\right)\)
\(=\left(\dfrac{1}{\left(a+2\right)\left(a-2\right)}+\dfrac{1}{\left(a+2\right)^2}\right)\cdot\left(a^2-4\right)\)
\(=\dfrac{a+2+a-2}{\left(a+2\right)^2\cdot\left(a-2\right)}\cdot\dfrac{\left(a+2\right)^2\cdot\left(a-2\right)^2}{1}\)
\(=2a\left(a-2\right)\)
Để A là số nguyên thì \(\left\{{}\begin{matrix}a\in Z\\a\notin\left\{2;-2\right\}\end{matrix}\right.\)
Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)
Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v
Lời giải:
Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)
\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)
Ta có:
\(a^2+9b^2+c^2+\dfrac{19}{2}-2a-12b-4c=a^2-2a+1+9b^2-12b+4+c^2-4c+4+\dfrac{1}{2}=\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+\dfrac{1}{2}>0\left(1\right)\)Vì (1) luôn đúng nên \(a^2+9b^2+c^2+\dfrac{19}{2}>2a+12b+4c\)