K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2021

ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le3\\x\ne1\end{matrix}\right.\)

\(\dfrac{\sqrt{x+1}\left(\sqrt{x+1}+\sqrt{3-x}\right)}{2\left(x-1\right)}>x-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x+1+\sqrt{-x^2+2x+3}}{x-1}>2x-1\)

- TH1: Với \(x>1\) BPT tương đương:

\(x+1+\sqrt{-x^2+2x+3}>\left(2x-1\right)\left(x-1\right)\)

\(\Leftrightarrow\sqrt{-x^2+2x+3}>2x^2-4x\)

Đặt \(\sqrt{-x^2+2x+3}=t\ge0\Rightarrow2x^2-4x=-2t^2+6\)

BPt trở thành: \(t>-2t^2+6\Leftrightarrow2t^2+t-6>0\)

\(\Rightarrow t>\dfrac{3}{2}\Rightarrow-x^2+2x+3>\dfrac{9}{4}\Rightarrow1< x< \dfrac{2+\sqrt{7}}{2}\)

TH2: với \(x< 1\) BPT tương đương:

\(x+1+\sqrt{-x^2+2x+3}< \left(2x-1\right)\left(x-1\right)\)

\(\Leftrightarrow\sqrt{-x^2+2x+3}< 2x^2-4x\)

Tương tự như trên, đặt  \(t=\sqrt{-x^2+2x+3}\ge0\) ta được \(0\le t< \dfrac{3}{2}\)

\(\Rightarrow-x^2+2x+3< \dfrac{9}{4}\) \(\Rightarrow-1\le x< \dfrac{2-\sqrt{7}}{2}\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}-1\le x< \dfrac{2-\sqrt{7}}{2}\\1< x< \dfrac{2+\sqrt{7}}{2}\end{matrix}\right.\)