Cho △ABC cân tại A có góc A(góc A thua 90o). Vẽ BD⊥AC, CE⊥AB(E∈ AE, D∈ AC) .CMR
a, BD=CE
b, ED song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
TA XÉT 2 TAM GIÁC BDC VÀ TAM GIÁC CEB CÓ
BC LÀ CẠNH HUYỀN CHUNG
GÓC E=GÓC D
EC=BD
=>TAM GIÁC BDC = TAM GIÁC CEB (CH GN)
B,XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ
GÓC E= GÓC D
A CHUNG
GÓC B=GÓC C
=>TAM GIÁC ADB = TAM GIÁC AEC (GCG)
=>AE=AD=>TAM GIÁC ADE CÂN TẠI A
a) Xét tg ABD và tg ACE có
A là góc chung
E = D = 90 độ
AB = AC ( do tg ABC cân tại A )
=> tg ABD = tg ACE ( cạnh huyền - góc nhọn )
b) Vì tg ABD = tg ACE (cmt) => AD = AE ( 2 cạnh tương ứng )
Có : AE + EB = AB ; AD + DC = AC
mà AB = AC ( cmt ) ; AD = AE ( cmt )
=> EB = DC
Xét tg EBC và tg DCB có :
E = D = 90 độ
B = C ( do tg ABC cân )
EB = DC (cmt)
=> tg EBC = tg DCB (gcg)
=>
(Tương tự thế này nha )
Ta có : HCKˆ=HBCˆ ( cùng phụ với BKCˆ ) ( 1 )
HCBˆ+HBCˆ=900 ( 2 góc nhọn trong tam giác vuông )
BCAˆ+CBAˆ=900 ( 2 góc nhọn trong tam giác vuông )
Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800
Hay : HCAˆ+HBAˆ=1800
mà : HBxˆ+HBAˆ=1800 ( hai góc kề bù )
Do đó : HCAˆ=HBxˆ(2)
mà : HBCˆ=HBxˆ ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)
a, \(\text{Xét 2 }\Delta BEC\text{ và }\Delta CDB\text{ ta có:}\)
\(BC\text{ chung}\)
\(\text{Góc }BEC=\text{Góc }CDB=90\text{ độ}\)
\(\text{Góc }EBC=\text{Góc }DCB\left(gt\right)\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-gn\right)\)
\(\text{Vậy BD=CE ( 2 cạnh tương ứng )}\)
b,