Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\text{Xét 2 }\Delta BEC\text{ và }\Delta CDB\text{ ta có:}\)
\(BC\text{ chung}\)
\(\text{Góc }BEC=\text{Góc }CDB=90\text{ độ}\)
\(\text{Góc }EBC=\text{Góc }DCB\left(gt\right)\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-gn\right)\)
\(\text{Vậy BD=CE ( 2 cạnh tương ứng )}\)
b,
(Tương tự thế này nha )
Ta có : HCKˆ=HBCˆ ( cùng phụ với BKCˆ ) ( 1 )
HCBˆ+HBCˆ=900 ( 2 góc nhọn trong tam giác vuông )
BCAˆ+CBAˆ=900 ( 2 góc nhọn trong tam giác vuông )
Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800
Hay : HCAˆ+HBAˆ=1800
mà : HBxˆ+HBAˆ=1800 ( hai góc kề bù )
Do đó : HCAˆ=HBxˆ(2)
mà : HBCˆ=HBxˆ ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)
a) Xét tg ABD và tg ACE có
A là góc chung
E = D = 90 độ
AB = AC ( do tg ABC cân tại A )
=> tg ABD = tg ACE ( cạnh huyền - góc nhọn )
b) Vì tg ABD = tg ACE (cmt) => AD = AE ( 2 cạnh tương ứng )
Có : AE + EB = AB ; AD + DC = AC
mà AB = AC ( cmt ) ; AD = AE ( cmt )
=> EB = DC
Xét tg EBC và tg DCB có :
E = D = 90 độ
B = C ( do tg ABC cân )
EB = DC (cmt)
=> tg EBC = tg DCB (gcg)
=>
mk sửa lại đề nha: Trên AB lấy E sao cho: AE = AD
a) \(\Delta ABC\)cân tại A
\(\Rightarrow\)\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\) (1)
\(\Delta AED\)cân tại E
\(\Rightarrow\)\(\widehat{AED}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{ABC}=\widehat{AED}\)
\(\Rightarrow\)\(DE\)\(//\)\(BC\)
b) \(\Delta EBC=\Delta DCB\) (c.g.c)
\(\Rightarrow\)\(\widehat{CEB}=\widehat{BDC}=90^0\)
\(\Rightarrow\)\(CE\)\(\perp\)\(AB\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔABC có AE/AB=AD/AC
nên DE//BC