K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

\(x^3-x^2-2x=0\)

⇔ \(x^3-2x^2+x^2-2x=0\)

⇔ \(x^2\left(x-2\right)+x\left(x-2\right)\) = 0

\(\left(x-2\right)\left(x^2-x\right)=0\)

⇔ \(x\left(x-2\right)\left(x+1\right)\) = 0

⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\\x+1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=2\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{0,2,-1\right\}\)

NV
27 tháng 6 2021

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2-\sqrt{3}\\x=2+\sqrt{3}\end{matrix}\right.\)

Ta có: \(x^3-3x^2-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)

Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:

(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)

.

16 tháng 5 2022

bf

19 tháng 6 2022

\(a)\) ĐKXĐ: \(a\ne-b;a\ne-c;b\ne-c\)

\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)

\(\Leftrightarrow\left(\dfrac{x-ab}{a+b}-c\right)+\left(\dfrac{x-ac}{a+c}-b\right)+\left(\dfrac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\dfrac{x-ab-ac-bc}{a+b}+\dfrac{x-ac-ab-bc}{a+c}+\dfrac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-ac-bc\right)\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=0\)

Vì \(a,b,c>0\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}>0\)

\(\Leftrightarrow x-ab-ac-bc=0\)

\(\Leftrightarrow x=ab+ac+bc\)

17 tháng 5 2018

Đáp án: D

Giải và biện luận các phương trình sau 
a)    (x-ab)/(a+b) + (x-ac)/(a+c) + (x-bc)/(b+c) = a+b+c 

b)    (x-a)/bc + (x-b)/ac + (x-c)/ab = 2(1/a + 1/b + 1/c)

2 tháng 10 2019

Phương trình x2 + (a + b + c)x + (ab + bc + ca) = 0

Có  Δ = (a + b + c)2 − 4(ab + bc + ca)

= a2 + b2 + c2 – 2ab – 2bc – 2ac

= (a – b)2 – c2 + (b – c)2 – a2 + (a – c)2 – b2

= (a – b – c)(a + c – b) + (b – c – a)

(a + b – c) + (a – c – b)(a – c + b)

Mà a, b, c là ba cạnh của một tam giác nên

a − b − c < 0 b − c − a < 0 a − c − b < 0 ; a + c − b > 0 a + b − c > 0

Nên Δ < 0 với mọi a, b, c

Hay phương trình luôn vô nghiệm với mọi a, b, c

Đáp án cần chọn là: D

19 tháng 6 2019

Ta có : \(\Delta\)' = (a+b+c)2-3.(ab+bc+ac) = a2+b2+c2+2ab+2ac+2bc-3ab-3bc-3ac = a2+b2+c2 - ab-bc-ac 

2. \(\Delta\)' = ( b^2-2bc+c^2)+(a^2-2ab+b^2)+(a^2-2ac+c^2)= (b-c)^2+(a-b)^2+(a-c)^2

=> \(\Delta\)'  = [( b-c)^2+(a-b)^2+(a-c)^2]/2 \(\ge\)0

<=> pt trên luôn có nghiệm với mọi a,b, c