a^2 + 4b^2 + 4c^2 >= ab - 4ac+8bc
chứng minh đẳng thức trên đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
\(a^2-2a+b^2+4b+4c^2-4c+6=0\\ \Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\\ \Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+1=0\\b+2=0\\2c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\left\{a;b;c\right\}=\left\{-1;-2;\dfrac{1}{2}\right\}\)
a nhân 2 vào 2 vế ta có
2a2+2b2+2c2=2ab +2bc+2ca
=> 2a2+2b2+2c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
=>(a-b)2+(b-c)2+(c-a)2=0
=>(a-b)=(b-c)=(c-a)=0
=>a-b=0 =>a=b (1)
b-c=0=>b=c (2)
từ (1) và (2)
=>a=b=c (đpcm)
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
\(a^2+2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
Mà \(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)
TA CÓ:
\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)
\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)
ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)
\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)
TA CẦN C/M:
\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\) \(\left(=2abc\left(a+b+c\right)\right)\)
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)
VẬY CẦN C/M:
\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)
XÉT HIỆU:
\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)
\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)
VÌ:
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)
\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)
\(\Rightarrow DPCM\)
Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b
Giả sử \(c=min\left\{a,b,c\right\}\)
Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc ≥ 0
⇔ (a - 2b + 2c)2 ≥ 0 (đúng ∀abc)
Vậy a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc