Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc ≥ 0
⇔ (a - 2b + 2c)2 ≥ 0 (đúng ∀abc)
Vậy a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
Nhầm , sorry bạn nha , mk làm lại nè
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 - 4ab + 4b2 + 4ac - 8bc + 4c2 ≥ 0
⇔ ( a - 2b)2 + 4c( a - 2b) + 4c2 ≥ 0
⇔ ( a - 2b + 2c)2 ≥ 0 ( luôn đúng ∀abc)
\(a^2+4b^2+4c^2\ge4ab-4ac+8bc\\ \Leftrightarrow a^2+4b^2+4c^2-4ab+4ac-8bc\ge0\\ \Leftrightarrow\left(a-2b+2c\right)^2\ge0\)
Luôn đúng với \(\forall x\in R\)
Câu đầu tiên áp dụng BĐT Cô si cho dưới mẫu.Câu thứ hai áp dụng BĐT Cô si cho vế trái (biểu thức trong ngoặc)?Có đc ko ạ?
1.Áp dụng BĐT Cô-si ta có:
\(a^4+1\ge2a^2\Rightarrow\frac{a^2}{a^4+1}\le\frac{a^2}{2a^2}\Rightarrow\frac{a^2}{a^4+1}\le\frac{1}{2}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=1\)
2.Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b\)
:))
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
Dấu "=" xảy ra khi a = b
b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)
c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)
\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)
\(\Rightarrow a^4+b^4+2\ge4ab\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)
Xét hiệu (a^2 + 4b^2 + 4c^2)-( 4ab-4ac+8bc )
= (a^2-4ab+4b^2) + 4c^2 + (4ac-8bc)
=(a-2b)^2 + 4c^2 + 4c(a-2b)
=(a-2b+2c)^2 >=0
Vậy a^2 + 4b^2 + 4c^2 >= 4ab-4ac+8bc
hok tốt