Tìm các số nguyên n biết
3chia hết cho (n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
\(n+1⋮n+1\)
\(\Rightarrow2n+2⋮n+1\)
\(\Rightarrow2n+2-2n+3⋮n+1\)
\(\Rightarrow5⋮n+1\)\(\Rightarrow n+1\inƯ\left(5\right)=\left[1;5;-1;-5\right]\)
xong rồi lập bảng nhé
a) Ta có: n+2 chia hết cho n-3
=>(n-3)+3+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=>n-3 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {4;8;2;-2}
b)Ta có: n-6 chia hết cho n-1
=>(n-1)+1-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {2;6;0;-4}
a) Ta có: n+2 chia hết cho n-3
=>(n-3)+3+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=>n-3 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {4;8;2;-2}
b)Ta có: n-6 chia hết cho n-1
=>(n-1)+1-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {2;6;0;-4}
Ta có: n+2 chia hết n-3
=> n-3+3+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Vì (n-3) chia hết cho n-3 => (n-3)+5 chia hết n-3
<=> 5 chia hết n-3 hay n-3 \(\inƯ\left(5\right)\)
=> n-3\(\in\left\{-5;-1;1;5\right\}\)
=>n \(\in\left\{-2;2;4;8\right\}\)
a) Ta có : n-2017\(⋮\)n-2018
\(\Rightarrow\)n-2018+1\(⋮\)n-2018
Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018
\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)
+) n-2018=-1
n=2017 (thỏa mãn)
+) n-2018=1
n=2019 (thỏa mãn)
Vậy n\(\in\){2017;2019}
c) Ta có : 2n-3\(⋮\)2n-5
\(\Rightarrow\)2n-5+2\(⋮\)2n-5
Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5
\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2 (thỏa mãn)
+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3 (thỏa mãn)
+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5 (không thỏa mãn)
+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5 (không thỏa mãn)
Vậy n\(\in\){2;3}
\(3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(\Rightarrow\)n + 1 \(\in\){ 1 ; 3 ; - 1 ; - 3 }
\(\Rightarrow x\in\){ 0 ; 2 ; -2 ; - 4 }
Vậy x \(\in\){ 0; 2 ; -2 ; -4 }
Vì 3 chia hết cho n + 1 => n + 1 thuộc Ư ( 3 )
Ư ( 3 ) = { 1 ; 3 }
TH1 : n + 1 = 1 TH2 : n + 1 = 3
n = 1 - 1 n = 3 - 1
n= 0 n = 2
Vậy n thuộc { 0 ; 2 }