Truy cập facebook page tại: Cuộc thi Trí tuệ VICE | Facebook
[Toán.C1011 _ 30.5.2021]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Spoil tí vòng 1 với vòng 2 khá là dễ ăn, full điểm bình thường nên các bạn làm bài hết sức cẩn thận để tránh những sai sót đáng tiếc.
Cố gắng để làm đề trùm - đề vòng 3 (vòng 3 có **** đấy, cẩn thận :) :v
1: Giả sử \(2\ge a\ge b\ge c\ge1\).
BĐT cần cm tương đương \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\).
Ta có \(\dfrac{\left(a-b\right)\left(b-c\right)}{bc}\ge0\Leftrightarrow\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\);
\(\dfrac{\left(a-b\right)\left(b-c\right)}{ab}\ge0\Leftrightarrow1+\dfrac{c}{a}\ge\dfrac{c}{b}+\dfrac{b}{a}\).
Từ đó ta chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\Leftrightarrow\left(a-2c\right)\left(2a-c\right)\le0\).
Dễ thấy \(a\le2\le2c;2a\ge2\ge c\) nên ta có đpcm.
Đẳng thức xảy ra khi chẳng hạn a = 2; b = c = 1.
Sáng nay đề chuyên Nguyễn Huệ khó lắm ạ mình làm được mỗi câu a. :(
Câu 1:
a) vận chuyển thụ động
b) các chất được vận chuyển từ tế bào chất vào nhân:
- protein loại histon: Đây là những protein đc tổng hợp ở các riboxom tự do nằm rải rác trong tế bào chất, chúng được vận chuyển vào nhân để tham gia cấu trúc NST cùng ADN.
- nucleotic: chúng được vận chuyển vào nhân để tham gia quá trình sao mã và phiên mã.
C5:
\(A=\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}=\dfrac{a^2}{a+ab^2c}+\dfrac{b^2}{b+bc^2d}+\dfrac{c^2}{c+cd^2a}+\dfrac{d}{d+da^2b}\)
Áp dụng BĐT Cauchy Schwars dạng Engel ta có:
\(A\ge\dfrac{\left(a+b+c+d\right)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\dfrac{16}{4+\left(ab+cd\right)\left(bc+ad\right)}\)
\(\ge\dfrac{16}{4+\left(\dfrac{ab+bc+cd+ad}{4}\right)^2}=\dfrac{16}{4+\left[\dfrac{\left(a+c\right)\left(b+d\right)}{2}\right]^2}\ge\dfrac{16}{4+\left[\dfrac{\left(\dfrac{a+b+c+d}{2}\right)^2}{2}\right]^2}=2\)
Dấu ''='' xảy ra khi và chỉ khi a=b=c=d=1
C15. 5:
Áp dụng BĐT Cauchy:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}=\dfrac{3a}{4}\)
\(\Rightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{3a}{4}-\dfrac{b+1}{8}-\dfrac{c+1}{8}\)
Tương tự: \(\Rightarrow\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{3b}{4}-\dfrac{c+1}{8}-\dfrac{a+1}{8}\); \(\Rightarrow\dfrac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\dfrac{3c}{4}-\dfrac{b+1}{8}-\dfrac{a+1}{8}\)
Cộng theo vế: \(VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{4}\left(a+b+c\right)-\dfrac{3}{4}=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
C15.2: ( Trần Văn Khắnk - Trần Thanh Fuongzz)
Theo định lý Sin: \(\dfrac{a}{sinA}=2R\Rightarrow sinA=\dfrac{a}{2R}\Rightarrow S=\dfrac{1}{2}bc.sinA=\dfrac{abc}{4R}\Leftrightarrow abc=4SR\) (1)
Gọi G là trọng tâm của tam giác ABC, ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)
\(\Leftrightarrow9OG^2=OA^2+OB^2+OC^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OB}.\overrightarrow{OC}+2\overrightarrow{OC}.\overrightarrow{OA}\)
\(\Leftrightarrow9OG^2=3R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OB}.\overrightarrow{OC}+2\overrightarrow{OC}.\overrightarrow{OA}\)
Có \(2\overrightarrow{OA}.\overrightarrow{OB}=\overrightarrow{OA}^2+\overrightarrow{OB}^2-\left(\overrightarrow{OA}-\overrightarrow{OB}\right)^2=2R^2-c^2\)
Tương tự suy ra: \(9OG^2=9R^2-\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2=9\left(R^2-OG^2\right)\) (2)
Từ (1) và (2), ta có đpcm \(\Leftrightarrow12SR\ge4S\sqrt{9\left(R^2-OG^2\right)}\)
\(\Leftrightarrow R\ge\sqrt{R^2-OG^2}\)
\(\Leftrightarrow OG^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra khi và chỉ khi \(O\equiv G\) hay tam giác ABC đều.
Toán C89 :
Ta có : \(x^3+y^3+6xy\le8\)
\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)
\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)
Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)
\(=x^2+y^2-xy+2.\left(x+y\right)+4\)
\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)
Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)
Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy Min \(Q=2\) khi \(x=y=1\)
Toán C88 :
Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :
\(\left(a+1\right)+4\ge4\sqrt{a+1}\)
\(\left(b+1\right)+4\ge4\sqrt{b+1}\)
\(\left(c+1\right)+4\ge4\sqrt{c+1}\)
Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)
\(\Leftrightarrow a+b+c\ge9\)
Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)
Chứng minh tương tự ta có :
\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)
Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)
[Toán.C93_17.2.2021] rất hay và khó! Đó là câu em gửi anh trên Facebook hồi sáng. Và em cũng là người đầu công khai đưa ra lời giải bài này.
Xem chi tiết tại tthnew's blog: 1721
a) Ta có \(\dfrac{IA}{IB}=\dfrac{AM}{BM}\) nên theo tính chất đường phân giác đảo, ta có IM là phân giác của tam giác AIB.
b) Đường thẳng qua I vuông góc với IM cắt đường tròn (IAB) tại K' khác I.
Ta dễ dàng nhận thấy IK' là phân giác ngoài của tam giác IAB nên K' là điểm chính giữa của cung AIB. Suy ra K' nằm trên đường trung trực của AB nên theo cách dựng, ta có \(K\equiv K'\).
Vậy A, I, K, B đồng viên.
c) Qua H kẻ đường thẳng vuông góc với HE cắt AB tại J. IK cắt AB tại G.
Ta có \(\widehat{HJE}=90^o-\widehat{HEA}=\widehat{KGB}=\dfrac{1}{2}sđ\stackrel\frown{KB}-\dfrac{1}{2}sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{AK}-\dfrac{1}{2}sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{IK}=\widehat{HFK}\).
Suy ra tứ giác HJFE nội tiếp nên \(FE\perp FJ\). Mà FE là phân giác của tam giác AFB nên FJ là phân giác ngoài. Từ đó \(\dfrac{EA}{EB}=\dfrac{JA}{JB}=k\). Mặt khác H nằm trên đường tròn đường kính EJ nên H nằm trên đường tròn Apollonius của đoạn thẳng AB theo tỉ số k. Suy ra HE là phân giác của góc AHB. (đpcm)
Hình vẽ