Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C15. 5:
Áp dụng BĐT Cauchy:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}=\dfrac{3a}{4}\)
\(\Rightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{3a}{4}-\dfrac{b+1}{8}-\dfrac{c+1}{8}\)
Tương tự: \(\Rightarrow\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{3b}{4}-\dfrac{c+1}{8}-\dfrac{a+1}{8}\); \(\Rightarrow\dfrac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\dfrac{3c}{4}-\dfrac{b+1}{8}-\dfrac{a+1}{8}\)
Cộng theo vế: \(VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{4}\left(a+b+c\right)-\dfrac{3}{4}=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
C15.2: ( Trần Văn Khắnk - Trần Thanh Fuongzz)
Theo định lý Sin: \(\dfrac{a}{sinA}=2R\Rightarrow sinA=\dfrac{a}{2R}\Rightarrow S=\dfrac{1}{2}bc.sinA=\dfrac{abc}{4R}\Leftrightarrow abc=4SR\) (1)
Gọi G là trọng tâm của tam giác ABC, ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)
\(\Leftrightarrow9OG^2=OA^2+OB^2+OC^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OB}.\overrightarrow{OC}+2\overrightarrow{OC}.\overrightarrow{OA}\)
\(\Leftrightarrow9OG^2=3R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OB}.\overrightarrow{OC}+2\overrightarrow{OC}.\overrightarrow{OA}\)
Có \(2\overrightarrow{OA}.\overrightarrow{OB}=\overrightarrow{OA}^2+\overrightarrow{OB}^2-\left(\overrightarrow{OA}-\overrightarrow{OB}\right)^2=2R^2-c^2\)
Tương tự suy ra: \(9OG^2=9R^2-\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2=9\left(R^2-OG^2\right)\) (2)
Từ (1) và (2), ta có đpcm \(\Leftrightarrow12SR\ge4S\sqrt{9\left(R^2-OG^2\right)}\)
\(\Leftrightarrow R\ge\sqrt{R^2-OG^2}\)
\(\Leftrightarrow OG^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra khi và chỉ khi \(O\equiv G\) hay tam giác ABC đều.
Sáng nay đề chuyên Nguyễn Huệ khó lắm ạ mình làm được mỗi câu a. :(
Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)
Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)
Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)
Suy ra tam giác BIJ cân tại J nên JB=JI
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B
BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)
suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)
\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE
suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)
hay \(SJ.EK=SK.JE\)
c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C
suy ra
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)
\( \widehat{JIC}+ \widehat{ILC}=90^o\)
\(\widehat{JCI}+ \widehat{JCL}=90^o\)
nên \(\widehat{ILC}= \widehat{JCL}\)
suy ra JC=JL nên J là trung điểm IL
Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)
\(\widehat{AIB}=\widehat{ACI}+90^o\)
nên \(\widehat{ACL}=\widehat{AIB}\)
Lại có: \(\widehat{LAC}=\widehat{BAI}\)
nên tam giác ABI \(\backsim\) tam giác ALC
suy ra \(AB.AC=AI.AL\)
Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)
suy ra \(BD.AC=AD.EC\)
cùng với\( \widehat{BDA}=\widehat{ECA}\)
nên tam giác ABD đồng dạng AEC
suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)
vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)
từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE
nên \(\widehat{ADI}=\widehat{ALE}\)
mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)
nên JM//LE
J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)
\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\2mx-2y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx+x=2+2m\\x+2y=2\end{matrix}\right.\\ \left\{{}\begin{matrix}x\left(2m+1\right)=2\left(m+1\right)\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\\dfrac{2\left(m+1\right)}{2m+1}+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\2m+2+4my+2y=4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y\left(4m+2\right)=2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y=\dfrac{2m}{4m+2}\end{matrix}\right.\\ thay.....x,y....vào....ta.....được\\ \dfrac{2\left(m+1\right)}{2m+1}+\dfrac{2m}{4m+2}=1\\ \Leftrightarrow\dfrac{4\left(m+1\right)}{4m+2}+\dfrac{2m}{4m+2}=\dfrac{4m+2}{4m+2}\\ \Rightarrow4m+4+2m=4m+2\\ \Leftrightarrow2m=-2\\ \Leftrightarrow m=-1\\ vậy...m=-1...thì...tm\) \(thay....m=3...vào...ta...có...hpt:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\)
\(thay...m=3....ta...có:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\\ vậy...với..m=3...thì...hệ....phương....trình....có...nghiệm...duy...nhất\left\{x=\dfrac{8}{7};y=\dfrac{3}{7}\right\}\)
C5:
\(A=\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}=\dfrac{a^2}{a+ab^2c}+\dfrac{b^2}{b+bc^2d}+\dfrac{c^2}{c+cd^2a}+\dfrac{d}{d+da^2b}\)
Áp dụng BĐT Cauchy Schwars dạng Engel ta có:
\(A\ge\dfrac{\left(a+b+c+d\right)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\dfrac{16}{4+\left(ab+cd\right)\left(bc+ad\right)}\)
\(\ge\dfrac{16}{4+\left(\dfrac{ab+bc+cd+ad}{4}\right)^2}=\dfrac{16}{4+\left[\dfrac{\left(a+c\right)\left(b+d\right)}{2}\right]^2}\ge\dfrac{16}{4+\left[\dfrac{\left(\dfrac{a+b+c+d}{2}\right)^2}{2}\right]^2}=2\)
Dấu ''='' xảy ra khi và chỉ khi a=b=c=d=1