K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

A B C D G M E F

a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.

Xét tam giác DMB và tam giác GMC có:

DM = GM

BM = CM

\(\widehat{DMB}=\widehat{GMC}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)

\(\Rightarrow BD=CG\)

b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)

Xét tam giác FBM và tam giác ECM có:

\(\widehat{FMB}=\widehat{EMC}=90^o\)

BM = CM

\(\widehat{FBM}=\widehat{ECM}\)

\(\Rightarrow\Delta FBM=\Delta ECM\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BF=CE\left(đpcm\right)\)

cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP 1, CM: AE=CP=EB 2, tam giác BEC= tam giác PCE 3,CM: EN // BC,EN= BC 4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC 5, So sánh các đương trung tuyến của tam giác BGD với các cạnh...
Đọc tiếp

cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP

1, CM: AE=CP=EB

2, tam giác BEC= tam giác PCE

3,CM: EN // BC,EN= BC

4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC

5, So sánh các đương trung tuyến của tam giác BGD với các cạnh của tam giác abc

6, Từ E ke đường thẳng song song với BC cắt AM tại K.CM K là trung điểm của AM. CM G là trọng tâm của tam giác MNE

7, Đường thẳng ck cắt ab tại I. J là trung điểm của AJ và AI =\(\(\(\frac{1}{3}\)\)\)AB

8, CMR trong 3 dường trung tuyến của tam giác ABC tổng 2 đường còn lại

9, Trên tia AB lấy điểm B' sao cho B là trung điểm EB' .Trên tia HC lấy điểm C' sao cho C là trung điểm của AC. CM B',M,A" thẳng hàng

10, Cho AM =12cm, BN= 2cm, CF =15 cm. Tính BA

11, G là trọng tâm của tam giác ABC, coa cạnh BC cố định. CMR đường thẳng AG luôn đi qua 1 điểm cố định khi A thay đổi

12, Cho điểm O thay đổi trong tam giác ABC. Lấy O sao cho M' là trung điểm của OO'. Gọi M là trung điểm AO'. CM OM' luôn luôn đi qua 1 điểm cố định

0
17 tháng 7 2020

A B C D E G M

A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow AG=2GD\)

MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )

\(\Rightarrow GM=2GD\)

NÊN D LÀ TRUNG ĐIỂM CỦA  GM

\(\Rightarrow GD=DM\left(ĐPCM\right)\)

XÉT \(\Delta BDM\)\(\Delta CDG\)

\(BD=CD\left(GT\right)\)

\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)

\(GD=DM\left(CMT\right)\)

=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)

B)

VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow CG=\frac{2}{3}CE\)

THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)

MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)

=>\(BM=CG=4\left(CM\right)\)

C) 

TA CÓ

 \(AB< DB+DA\)

\(AC< DC+DA\)

CỘnG VẾ THEO VẾ

\(\Rightarrow AB+AC< 2AD+DB+DC\)

GIẢI TIẾP LÀ RA

cái chỗ giải tiếp là ra bạn giải tiếp cho mk ik

mk ko làm đc

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
1 tháng 4 2016
  • A B C G D M 1 2 A B C D T E 2 1