Cho các số nguyên dương x, y, z. Chứng minh rằng:
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số nguyên dương x, y, z. Chứng minh rằng:
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)
Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1
=> bất đẳng thức luôn xảy ra dấu bằng
Sửa đề 1 chút cho z; y; x là các số dương
Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)
=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)
Tương tự:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)
\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1
Ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\)
Do đó M ko nhận giá trị nguyên
Áp dụng BĐT Cauchy cho 3 số dương, ta được:
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)
\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)
\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
A = \(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)
A=3 \(-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A <2 (1)
mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A >1 (2)
từ (1) và (2) => 1<A<2 => A ko phải là số nguyên
Bài này dễ mà bạn! Bạn chỉ cần chứng minh A nằm giữa 2 số tự nhiên liên tiếp là được !
Với x, y, z nguyên dương
Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)
Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)
\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)
Từ (1) và (2) => dpcm
Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)
Lại có : x,y,z > 0
=> 0 < x/x+y ; y/y+z ; z/z+x < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)
Từ (1) và (2) => ĐPCM
Tk mk nha