K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

O A B C I H D K E F

a) Ta thấy \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widebat{BD}=\widebat{DC}\)

\(\Rightarrow\widehat{HAI}=\widehat{CKD}\)   (Hai góc nội tiếp chắn hai cùng bằng nhau)

Do DK là đường kính nên \(\widehat{KCD}=90^o\)

Suy ra \(\Delta AHI\sim\Delta KCD\left(g-g\right)\)

b) Ta thấy \(\widehat{BID}=\widehat{ABI}+\widehat{BAD}\)  (Tính chất góc ngoài)

Mà \(\widehat{ABI}=\widehat{IBC};\widehat{BAD}=\widehat{DBC}\) nên \(\widehat{BID}=\widehat{IBC}+\widehat{CBD}=\widehat{IBD}\)

Suy ra DB = DI

Lại có \(\widehat{BAD}=\widehat{CAD}\Rightarrow BD=DC\)

Nên DI = DB = DC

c) Kéo dài OI, cắt đường tròn (O) tại hai điểm E và F. 

Ta có ngay \(\Delta EAI\sim\Delta DFI\left(g-g\right)\Rightarrow\frac{IA}{IF}=\frac{IE}{ID}\Rightarrow IA.ID=IE.IF\)

\(=\left(OE-OI\right)\left(OI+OF\right)=R^2-d^2\)

d) Ta có : \(\Delta AHI\sim\Delta KCD\left(cma\right)\Rightarrow\frac{IA}{KD}=\frac{HI}{CD}\Rightarrow IA.CD=KD.HI\)

\(\Rightarrow IA.ID=2OD.HI=2Rr\)

Từ câu c suy ra \(2Rr=R^2-d^2\Leftrightarrow d^2=R^2-2Rr\)

14 tháng 11 2018

Chọn đáp án C.

Gọi M là trung điểm của BC: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC

Áp dụng định lí Pytago vào tam giác ABM ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

7 tháng 6 2021

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

9 tháng 5 2021

giúp mình câu b với các bạn ơi