K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

15 tháng 3 2016

ĐK : \(\begin{cases}x\ge\frac{-1}{3}\\y\le5\end{cases}\)

\(\sqrt{5x^2+3y+1}+1-4x=0\)

\(\Leftrightarrow\begin{cases}x\ge\frac{1}{4}\\5x^2+3y+1=16x^2-8x+1\left(1\right)\end{cases}\)

(1) \(\Leftrightarrow11x^2-8x-3y=0\left(2\right)\)

Đặt \(\begin{cases}\sqrt{3x+1}=a\left(a\ge0\right)\\\sqrt{5-y}=b\left(b\ge0\right)\end{cases}\) \(\Rightarrow\begin{cases}3x+2=a^2+1\\6-y=b^2+1\end{cases}\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\\ \Leftrightarrow a^3-b^3+a-b=0\\ \Leftrightarrow\left(a-b\right)\left(a^2-ab+b^2+1\right)=0\\ \Leftrightarrow a-b=0\left(a^2-ab+b^2+1>0\right)\\\Leftrightarrow a=b\\ \)

\(\Rightarrow\sqrt{3x+1}=\sqrt{5-y}\\ \Leftrightarrow3x+1=5-y\\ \Leftrightarrow y=4-3x\left(3\right)\)

Từ (2) và (3)

 \(\Rightarrow11x^2-8x-3\left(4-3x\right)=0\\ \Leftrightarrow11x^2+x-12=0\\ \Leftrightarrow x=1\left(TM\right);x=\frac{-12}{11}\left(loại\right)\\ \Rightarrow y=1\left(TM\right)\)

Vậy S = \(\left\{\left(1;1\right)\right\}\)

14 tháng 3 2016

no biết

a: \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7x=14\\2x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=5-2x=5-2\cdot2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}-x+2y=2\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x+4y=4\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\x-2y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\x=-2+2y=-2+2\cdot1=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}2x-y=13\\y-5=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=13\\y=-7+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+13=-2+13=11\\y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=-2\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}3x+y=8\\2x-3y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x+3y=24\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=25\\3x+y=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{25}{11}\\y=8-3x=8-3\cdot\dfrac{25}{11}=8-\dfrac{75}{11}=\dfrac{13}{11}\end{matrix}\right.\)

a: =>2/x+2/y=2 và 4/x-2/y=1

=>6/x=3 và 1/x+1/y=1

=>x=2 và 1/y=1-1/2=1/2

=>x=2; y=2

b: Đặt 1/x=a; 1/y=b

=>1/3a+1/3b=1/4 và 5/6a+b=2/3

=>a=1/2; b=1/4

=>x=2; y=4

10 tháng 4 2021

a) x^2 - 3x + 2 = 0

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)

=> pt có 2 nghiệm pb

\(x_1=\frac{-\left(-3\right)+1}{2}=2\)

\(x_2=\frac{-\left(-3\right)-1}{2}=1\)

10 tháng 4 2021

a) Dễ thấy phương trình có a + b + c = 0 

nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2

b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)

Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3

Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2

Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )