Tìm x biết \(\left|x+2\right|+\left|x+6\right|=3x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
<=> \(x^3-9x^2+27x-27\) \(-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)+3x^2=-33\)
<=> \(x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)
<=> \(-6x^2+39x+6=-33\)
<=> \(6x^2-39x-6=33\)
<=> \(6x^2-39x-39=0\)
<=> \(6\left(x^2-\frac{39}{6}x-\frac{39}{6}\right)=0\)
<=> \(x^2-2.x.\frac{39}{12}+\frac{1521}{144}-\frac{273}{16}=0\)
<=> \(\left(x-\frac{39}{12}\right)^2-\frac{273}{16}=0\)
<=> \(\left(x-\frac{39}{12}-\frac{\sqrt{273}}{4}\right)\left(x-\frac{39}{12}+\frac{\sqrt{273}}{4}\right)=0\)
<=> \(\left(x-\frac{13+\sqrt{273}}{4}\right).\left(x-\frac{13-\sqrt{273}}{4}\right)=0\)
<=> \(x=\frac{13+\sqrt{273}}{4}\) ( h ) \(x=\frac{13-\sqrt{273}}{4}\)
học tốt
\(\Leftrightarrow6x^2+4x+27x+18-6x^2-12x-x-2=x^2-x-6x-6\)
\(\Leftrightarrow18x+16=x^2-7x-6\)
\(\Leftrightarrow x^2-7x-18x=16+6\)
\(\Leftrightarrow x^2-15x=22\)
\(\Leftrightarrow x^2-15x-22=0\)
......
\(\Leftrightarrow\left(6x^2+27x+4x+18\right)-\left(6x^2+x+12x+2\right)=x-1-x+6\)
\(\Leftrightarrow6x^2+31x+18-6x^2-x-12x-2=7\)
\(\Leftrightarrow18x+16=7\)
\(\Leftrightarrow18x=-9\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x-1\right)-\left(x-6\right)\)
\(3x\left(2x+9\right)+2\left(2x+9\right)-x\left(6x+1\right)-2\left(6x+1\right)=x-1-x+6\)
\(6x^2+27x+4x+18-6x^2-x-12x-2=5\)
\(6x^2+\left(27x+4x\right)+18-6x^2-\left(12x+x\right)-2=5\)
\(6x^2+31x+18-6x^2-13x-2=5\)
\(\left(6x^2-6x^2\right)+\left(31x-13x\right)+\left(18-2\right)=5\)
\(18x+16=5\)
\(18x=5+16\)
\(18x=21\)
\(x=21:18\)
\(x=\frac{7}{6}\)
Vậy \(x=\frac{7}{6}\)
P/s: Mình mới lớp 6 nên hi vọng bn xem bài của mik thật kĩ xem có sai sót không,cảm ơn.
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
dễ mà
bn chia 2 trường hợp
TH1 : 3x - 4 = 6
TH2 : x + 2 = 6
Vậy ....
bn tự tính nha .. bn hỉu hăm ??
<=>(x3-9x2+27x-27)-(x3-33+6(x2+2x+1)=15
<=>x3-9x2+27x-27-x3+27+6x2+12x+6=15
<=>-3x2+39x+9=0
<=>x2-13x+3=0
<=>(x2-2.x.13/2+169/4)-157/4=0
<=>(x-13/2)2=157/4
<=>x-13/2=\(\sqrt{\frac{157}{2}}\)hoặc x=13/2= - \(\sqrt{\frac{157}{2}}\)
<=>x=(13+\(\sqrt{\frac{157}{2}}\))hoặc x=\(\frac{13-\sqrt{\frac{157}{2}}}{2}\)
(x-3)3 - (x-3)(x2+3x+9) + 6(x+1)2 = 15
x3 -9x2 + 27x - 27 - (x3-27) + 6( x2+ 2x + 1) =15
x3 -9x2 + 27x - 27 - x3+ 27 + 6x2 + 12x + 6 = 15
-3x2 + 39x -9 = 0
-3(x2 - 13x + 3) = 0
x2 - 13x + 3 = 0
=> x=0,2350179569 ( chỗ này bấm máy tính)
còn giải thì làm theo mấy cách trong đây
BÀI 3 – 4
Phương trình bậc hai một ẩn – Công thức nghiệm
B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)
\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)
b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)
\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))
\(\Leftrightarrow x>-1\).
-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).
Ta có
\(|x+2|\ge0;|x+6|\ge0\)
\(\Rightarrow3x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+2\ge2>0\Leftrightarrow|x+2|=x+2\)
\(\Rightarrow x+6\ge6>0\Leftrightarrow|x+6|=x+6\)
Ta có phương trình sau :
\(\left(x+2\right)+\left(x+6\right)=3x\)
\(\Leftrightarrow2x+8=3x\)
\(\Leftrightarrow x=8\left(t/m\right)\)
Vậy \(x=8\)
\(\left|x+2\right|+\left|x+6\right|=3x\).
Ta có:
\(\left|x+2\right|\ge0\forall x\).
\(\left|x+6\right|\ge0\forall x\).
\(\Rightarrow\left|x+2\right|+\left|x+6\right|\ge0\forall x\).
Do đó \(3x\ge0\Rightarrow x\ge0\)nên \(\left|x+2\right|=x+2\); \(\left|x+6\right|=x+6\). Do đó:
\(\left(x+2\right)+\left(x+6\right)=3x\).
\(\Rightarrow2x+8=3x\).
\(\Rightarrow3x-2x=8\).
\(\Rightarrow x=8\)(thỏa mãn \(x\ge0\)).
Vậy \(x=8\).