Cho tam giác ABC có góc A = 2 góc B. Tính AB,biết AC=9cm,BC=12cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý PYTAGO ta cóa :AB2 + AC2 = BC2
Từ đó ta có: AB2= 122- 92 = 63
Từ suy ra AB = CĂN CỦA 63 nhé !
a/ Ta có \(\widehat{A}=180^o-\widehat{B}-\widehat{C}\)(tổng ba góc của một tam giác)
=> \(\widehat{A}=180^o-40^o-50^o\)
=> \(\widehat{A}=90^o\)=> \(\Delta ABC\)vuông tại A
=> AB2 + AC2 = BC2 (định lí Pitago)
=> AC2 = BC2 - AB2
=> AC2 = 122 - 92
=> AC2 = 144 - 81
=> AC2 = 63
=> AC = \(\sqrt{63}\)(cm)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm
-> BC = CH + BH = 9 + 16 = 25 cm
* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm
Áp dụng đlí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)
=> AC = 15 cm
Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:
AC2 = AH2 + HC2 = 122 + 92 = 225
\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)
Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:
AC2 = BC.HC
\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)
Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:
BC2 = AB2 + AC2
\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400
\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)
Vậy ...
Chúc bn học tốt!
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{144}{9}=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=CH^2+AH^2\)
\(\Leftrightarrow AC^2=9^2+12^2=225\)
hay AC=15(cm)
Ta có: BH+CH=BC
nên BC=9+16=25(cm)
Theo hệ thức lượng trong tam giác vuông:
• `AH^2=HB.HC => HB=12^2 : 9=16(cm)`
`=> BC=HB+HC=9+16=25(cm)`
• `AB^2=HB.BC=>AB=\sqrt(16.25)=20(cm)`
•`AC^2=HC.BC=>AC=15(cm)`
Vậy...
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(BC=\sqrt{225}=15\left(cm\right)\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
c: Ta có: DA=DE
mà DE<DC(ΔDEC vuông tại E)
nên DA<DC
a, Áp dụng Đ. L py-ta-go vào tg ABC vuông tại A, ta có:
BC2=AC2+AB2
=>BC2=122+92
=144+81
=225.
=>BC=15(cm).
b, Xét tg ABD và tg ABE, có:
góc A = góc E(=90o).
BD chung.
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD(ch-gn)
=>AD=DE(2 cạnh tương ứng)