K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

4x - 12.2x + 32 = 0

<=> (2x)2 - 2.6.2x + 36 - 4 = 0

<=> (2x - 6)2 - 4 = 0

<=> (2x - 8)(2x - 4) = 0

<=> \(\orbr{\begin{cases}2^x=8\\2^x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

Vậy \(x\in\left\{3;2\right\}\)là nghiệm phương trình 

10 tháng 3 2019

\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)

\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)

Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)

Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)

V...\(S=\varnothing\)

\(b.4^x-12.2^x+32=0\)

\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)

\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)

\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

V...\(S=\left\{2;3\right\}\)

^^ đúng ko ta

29 tháng 12 2019

a) (x+1)(x+2)(x+5)(x+6)-60=0

[(x+1)(x+6)][(x+2)(x+5)]-60=0

(x^2 + 7x + 6)(x^2  + 7x + 10) - 60 = 0

đặt t = x^2 + 7x + 8

pt trở thành

(t-2)(t+2)-60=0

t^2 - 64=0 .....

t=8 hoặc t=-8.

tìm x ....

4 tháng 2 2020

Ta có : \(4^x+12.2^x+32=0\)

<=> \(\left(2^x\right)^2+2.6.2^x+36-4=0\)

<=> \(\left(2^x+6\right)^2-4=0\)

<=> \(\left(2^x+6+2\right)\left(2^x+6-2\right)=0\)

<=> \(\left(2^x+8\right)\left(2^x+4\right)=0\)

<=> \(\left[{}\begin{matrix}2^x+8=0\\2^x+4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}2^x=-8\\2^x=-8\end{matrix}\right.\) ( Vô lý )

Vậy phương trình vô nghiệm .

30 tháng 1 2016

đặt 2xlà a thì ra rồi

30 tháng 1 2016

x=2 hoặcx= 3

=>(2^x)^2-12*2^x+32=0

=>(2^x-4)(2^x-8)=0

=>x=3 hoặc x=2

3 tháng 1 2018

\(4^x-12.2^x+32=0\)

\(2^x.2^x-4.2^x-8.2^x+4.8=0\)

\(2^x\left(2^x-4\right)-8\left(2^x-4\right)=0\)

\(\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\left[{}\begin{matrix}2^x-4=0\\2^x-8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2^x=2^2\\2^x=2^3\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
29 tháng 12 2019

\(4^x-12.2^x+32=0\Leftrightarrow\left(2^x\right)^2-2.6.2^x+6^2-4=0\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)

\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\Leftrightarrow\orbr{\begin{cases}2^x-8=0\\2^x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2^x=8\\2^x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=2^3\\2^x=2^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)

Vậy \(S=\left\{2;3\right\}\)

10 tháng 3 2019

a) Từ phương trình ban đầu ta có:

(x + 1)(x + 2)(x + 5)(x + 6) = 60

\(\Leftrightarrow\) [(x + 1)(x + 6)][(x + 2)(x + 5)] = 60

\(\Leftrightarrow\) (x2 + 7x + 6)(x2 + 7x + 10) = 60 (1)

Đặt x2 + 7x + 6 = a. Thay a vào phương trình (1) ta có:

a(a + 4) = 60

\(\Leftrightarrow\) a2 + 4a + 4 = 64

\(\Leftrightarrow\) (a + 2)2 = 64

\(\Leftrightarrow\) a + 2 = \(\pm\)8

Đến đây thay x vào rồi giải tiếp