K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Giá trị lớn nhất của đa thức E=-x^2-4x-y^2+2y

25 tháng 12 2016

1

 

5 tháng 11 2016

\(\frac{x^2-yz}{yz}+1+\frac{y^2-zx}{zx}+1+\frac{z^2-xy}{xy}+1=3\Leftrightarrow\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)

\(\Leftrightarrow\frac{1}{xyz}\left(x^3+y^3+z^3\right)=3\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Tới đây bạn thay vào nhé :)

9 tháng 3 2020

Áp dụng BĐT Cosi cho 2 sô dương ta có: \(x^2+yz\ge2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx};z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được:

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

9 tháng 3 2020

Áp dụng BĐT Cosi cho 2 số dương ta có: \(x^2+yz\ge2\sqrt{x^2yz}=2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx},z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được: 

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y=z\)

Cách 2:

Ta chuẩn hóa xyz=1

BĐT viết lại là \(\frac{x}{x^3+1}+\frac{y}{y^3+1}+\frac{z}{z^3+1}\le\frac{1}{2}\left(x+y+z\right)\)

Ta sử dụng đánh giá

\(x-\frac{2x}{x^3+1}+\frac{3}{2}\ge\frac{9x^2}{2\left(x^2+x+1\right)}\)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(2x^4+3x^2+7x+3\right)}{2\left(x^3+1\right)\left(x^2+x+1\right)}\ge0\)

Do vậy ta cần c/m \(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\)

 ta có \(\left(x;y;z\right)\rightarrow\left(\frac{a^2}{bc};\frac{b^2}{ca};\frac{c^2}{ab}\right)\)

BĐT viết lại là \(\frac{a^4}{a^4+a^2bc+\left(bc\right)^2}+\frac{b^4}{b^4+b^2ca+\left(ca\right)^2}+\frac{c^4}{c^4+c^2ab+\left(ab\right)^2}\ge1\)

Theo bđt Cauchy-Schwarz ta có

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+abc\left(a+b+c\right)+\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2}\)

Theo bđt AM-GM ta có

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(ab\right)^2+2\left(bc\right)^2+2\left(ca\right)^2}=1\)

Dấu "=" xảy ra khi a=b=c=> x=y=z