Bài 5 TÍnh S = 1+2+2 mũ 2 +..+ 2mũ 2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2^{10}-1\)
Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)
Vậy \(S< 5.2^8\)
S=1+2+22+23+...+220
2S=2+22+23+24+...+221
=>S=2S-S=221-1C
Vậy S=221-1
599 - 42 x 597 - 32 x 59
= 597.(52 - 42) - 32.59
= 597.(25 - 16) - 32.59
= 597.9 - 9.59
\(S=1+2+2^2+2^3+...+2^{100}\)
\(2S=2+2^2+2^3+2^4+...+2^{101}\)
\(2S-S=\left(2+2^3+..+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)
\(S=2^{201}-1\)
Ta có
S = 1 + 2 + 22 + 23 + ....+ 2100
2S = 2 + 22 + 23 + 24 + . ....+ 2101
2S-S = ( 2 + 22 + 23 + 24 + . ....+ 2101) - ( 1 + 2 + 22 + 23 + ....+ 2100)
S = 2 + 22 + 23 + 24 + . ....+ 2101 - 1 -2 - 22 - 23 -....- 2100
S = 2101 - 1
\(B=\dfrac{1+2+2^2+.............................+2^{2008}}{1-2^{2009}}\)
Đặt \(N=1+2+2^2+..........+2^{2008}\)
\(\Rightarrow2N=2+2^2+2^3+.................+2^{2009}\)
2N-N=\(\left(2+2^2+2^3+............+2^{2009}\right)-\left(1+2+2^2+............+2^{2008}\right)\)
\(N=2^{2009}-1\)
Thay N vào B được
\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)
Vậy .........................
Chúc bn học tốt
Giải:
\(B=\dfrac{1+2+2^2+2^3+...+2^{2018}}{1-2^{2009}}\)
Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)
lam luon nha
=>S.2=2+2^2+2^3+....+2^2018
=>S.2-S=S=(2+2^2+2^3+...+2^2018)-(1+2+2^2+2^3+...2^2017)
=>S=2^2018-1