K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

lam luon nha

=>S.2=2+2^2+2^3+....+2^2018

=>S.2-S=S=(2+2^2+2^3+...+2^2018)-(1+2+2^2+2^3+...2^2017)

=>S=2^2018-1

13 tháng 7 2018

\(S=1+2+2^2+...+2^9\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)

\(\Rightarrow S=2^{10}-1\)

Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)

Vậy \(S< 5.2^8\)

13 tháng 7 2018

S=1+2+2^2+2^3+...+2^9

2S=2+2^2+2^3+...+2^9+2^10

2S-S=(2+2^2+2^3+...+2^9+2^10)-(1+2+2^2+2^3+...+2^9)

S=2^10-1

5.2^8=(2^2+1).2^8=(2^2.2^8)+(1.2^8)=2^10+2^8

Vì 2^10-1<2^10+2^8=> S<5.2^8

Vậy S < 5. 2^8

S=1+2+22+23+...+220

2S=2+22+23+24+...+221  

=>S=2S-S=221-1C

Vậy S=221-1

21 tháng 1 2019

\(S=1+2+2^2+2^3+...+2^{20}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{21}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{21}\right)-\left(1+2+...+2^{20}\right)\)

\(\Rightarrow S=2^{21}-1\)

5 tháng 8 2018

http://123link.pw/j6KCoe

15 tháng 10 2023

   599 - 42 x 597 - 32 x 59

= 597.(52 - 42) - 32.59

= 597.(25 - 16) - 32.59

= 597.9 - 9.59

28 tháng 4 2020

dùng  máy tính nha b

chúc hok tốt

4 tháng 1 2022

mình bắt đầu thấy loạn rồi đấy

\(S=1+2+2^2+2^3+...+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{101}\)

\(2S-S=\left(2+2^3+..+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)

\(S=2^{201}-1\)

10 tháng 11 2020

Ta có 

S = 1 + 2 + 22 + 23 + ....+ 2100

2S = 2 + 22 + 23 + 24 + . ....+ 2101

2S-S = ( 2 + 22 + 23 + 24 + . ....+ 2101) - ( 1 + 2 + 22 + 23 + ....+ 2100)

S = 2 + 22 + 23 + 24 + . ....+ 2101  - 1 -2 - 22  - 23 -....-  2100

S = 2101 - 1 

23 tháng 5 2021

\(B=\dfrac{1+2+2^2+.............................+2^{2008}}{1-2^{2009}}\)

Đặt \(N=1+2+2^2+..........+2^{2008}\)

\(\Rightarrow2N=2+2^2+2^3+.................+2^{2009}\)

2N-N=\(\left(2+2^2+2^3+............+2^{2009}\right)-\left(1+2+2^2+............+2^{2008}\right)\)

\(N=2^{2009}-1\)

Thay N vào B được

\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)

Vậy .........................

Chúc bn học tốt

Giải:

\(B=\dfrac{1+2+2^2+2^3+...+2^{2018}}{1-2^{2009}}\) 

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2009}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\) 

\(A=2^{2009}-1\) 

\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn