K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

với x < 0; x ∈ Z

=> x mang dấu (-)

=> x2 = (-) . (-) = (+)

=> với x ∈ Z; x<0 thì x∈ N

với x = 0

=> x2 = 0.0 = 0 ∈ N

=> với x = 0 thì x2 ∈ N

với x > 0; x ∈ Z

=> x mang dấu  (+)

=> x2 = (+) . (+) = (+)

=> với x > 0; x ∈ Z thì x2 ∈ N

vậy ∀ x ∈ Z thì x2 là số tự nhiên

với x < 0; x ∈ Z

=> x mang dấu (-)

=> x2 = (-) . (-) = (+)

=> với x ∈ Z; x<0 thì x∈ N

với x = 0

=> x2 = 0.0 = 0 ∈ N

=> với x = 0 thì x2 ∈ N

với x > 0; x ∈ Z

=> x mang dấu  (+)

=> x2 = (+) . (+) = (+)

=> với x > 0; x ∈ Z thì x2 ∈ N

vậy ∀ x ∈ Z thì x2 là số tự nhiên

Hok tốt !

30 tháng 3 2018

Trên mạng có nhiều lắm í bn!

30 tháng 3 2018

Giả sử \(x>y>z>t\)

Ta có : 

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x+y+z+t}{x+y+z+t}=1\)

\(\Rightarrow\)\(M>1\)\(\left(1\right)\)

Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\) ) 

\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\) ( cộng tử và mẫu cho t ) 

\(\frac{y}{x+y+t}< \frac{y+z}{z+y+z+t}\) ( cộng tử và mẫu cho z ) 

\(\frac{z}{y+z+t}< \frac{x+z}{x+y+z+t}\) ( cộng tử và mẫu cho x ) 

\(\frac{t}{x+z+t}< \frac{y+t}{x+y+z+t}\) ( cộng tử và mẫu cho y ) 

\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< M< 2\)

Vậy M không là số tự nhiên với mọi \(x,y,z,t\inℕ\)

Chúc bạn học tốt ~ 

9 tháng 11 2015

\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\)

Đặt \(x^2+xy+xz=a\) , ta có:

\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)

\(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương với \(x;y;z\in N\)

11 tháng 1 2018

a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3

Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )

=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N

Tk mk nha

11 tháng 1 2018

b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2

=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)

Mà 20172018 không chia hết cho 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài