tính GTBT A=\(\frac{15\text{│}x+1\text{│}+32}{6\text{│}x+1\text{│}+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\left|x+1\right|=t\ge0\)
Ta có: \(A=\dfrac{15t+32}{6t+8}=\dfrac{6t+8+6t+8+3t+16}{6t+8}\)
\(=\dfrac{6t+8}{6t+8}+\dfrac{6t+8}{6t+8}+\dfrac{3t+16}{6t+8}\)
\(=1+1+\dfrac{3t+16}{6t+8}\)
\(=1+1+\dfrac{3t+4+12}{6t+8}=1+1+\dfrac{3t+4}{6t+8}+\dfrac{12}{6t+8}\)
\(\le1+1+\dfrac{1}{2}+\dfrac{12}{8}=1+1+\dfrac{1}{2}+\dfrac{3}{2}=4\)
Dấu "=" xảy ra khi: \(t=0\) hay \(x=-1\)
A chỉ có giá trị lớn nhất khi |x+1|=0 =>x=-1
Ta có : A=15|x+1|+32/6|x+1|=15|-1+1|+32/6|-1+1|+8=32/4=4
Vậy giá trị lớn nhất của biểu thức A là 4
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
\(\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{2\text{x}3+4\text{x}6+6\text{x}9+8\text{x}12}\)
\(\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{2\text{x}3+4\text{x}6+6\text{x}9+8\text{x}12}\)
\(=\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{\text{1x}2\text{x}3+2\text{x}4\text{x}3+3\text{x}6\text{x}3+4\text{x}8\text{x}3}\)
\(=\frac{1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8}{3\left(1\text{x}2+2\text{x}4+3\text{x}6+4\text{x}8\right)}\)
\(=\frac{1}{3}\)
Ta có: \(\frac{1.2+2.4+3.6+4.8}{2.3+4.6+6.9+8.12}=\frac{1.2}{2.3}+\frac{2.4}{4.6}+\frac{3.6}{6.9}+\frac{4.8}{8.12}.\)
\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{3}.4=\frac{4}{3}\)
#)Giải :
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{5}-\frac{1}{10}\)
\(A=\frac{1}{10}\)