a) Cho a+b=2 CMR \(a^4+b^4\ge2\)
b) Cho \(a+b\ge2\)CMR \(a^3+b^3\le a^4+b^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta sẽ cm 2(a^4+b^4)>=(a+b)(a^3+b^3)
<=> (a-b)^2 (a^2 + ab+b^2) >= 0 (đúng)
vậy 2(a^4+b^4)>=(a+b)(a^3+b^3)
mà a+b>=2
=> 2(a^4+b^4)>=(a+b)(a^3+b^3) >= 2(a^3+b^3)
=> a^4 + b^4 >= a^3 + b^3
có bđt x² + y² ≥ (x+y)²/2 (*)
cm: (*) <=> 2x²+2y² ≥ x²+y²+2xy <=> x²+y²-2xy ≥ 0 <=> (x-y)² ≥ 0 bđt đúng
dấu "=" khi x = y
ad bđt (*) vào bài toán:
a^4 + b^4 ≥ (a²+b²)²/2 ≥ [(a+b)²/2]²/2 = [(2²)/2]²/2 = 2 (đpcm) ; dấu "=" khi a = b = 1
Bạn tham khảo lời giải bài 4 link sau:
Câu hỏi của Bonking - Toán lớp 9 | Học trực tuyến
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có hai số cùng phía so với 2, không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab+4\ge2a+2b\)
\(\Leftrightarrow abc+4c\ge2ac+2bc\)
\(\Rightarrow VT\ge a^2+b^2+c^2+2ac+2bc-4c+4\)
\(VT\ge2ab+c^2-4c+4+2bc+2ac\)
\(VT\ge2\left(ab+bc+ca\right)+\left(c-2\right)^2\ge2\left(ab+bc+ca\right)\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Bài 1:
a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0
=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)
b) Áp dụng liên tiếp bất đẳng thức Cô-si:
\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)
Dấu "=" xảy ra <=> a = b = c = d
Bài 2:
Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0
<=> 3ab + 3bc + 3ca ≤ (a + b + c)2
<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca
<=> ab + bc + ca ≤ a2 + b2 + c2
Thật vậy:
(a - b)2 + (b - c)2 + (c - a)2 ≥ 0
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> a2 + b2 + c2 ≥ ab + bc + ca
Dấu "=" xảy ra <=> a = b = c = 0
b) Giả sử:
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4-a^4-a^3b-ab^3-b^4\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) BĐT đúng
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Mà \(a+b\ge2\)
\(\Rightarrow2\left(a^4+b^4\right)\ge2\left(a^3+b^3\right)\)
\(\Rightarrow a^4+b^4\ge a^3+b^3\)
Dấu = xảy ra khi \(a=b=1\)