\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Bài 1:

a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0

=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)

b) Áp dụng liên tiếp bất đẳng thức Cô-si:

\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)

Dấu "=" xảy ra <=> a = b = c = d

Bài 2:

Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0

<=> 3ab + 3bc + 3ca ≤ (a + b + c)2

<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca

<=> ab + bc + ca ≤ a2 + b2 + c2

Thật vậy:

(a - b)2 + (b - c)2 + (c - a)2 ≥ 0

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> a2 + b2 + c2 ≥ ab + bc + ca

Dấu "=" xảy ra <=> a = b = c = 0

18 tháng 2 2019

@Nguyễn Thị Ngọc Thơ tưởng bữa trước bảo là tên cặn bã cơ mà =.='', giờ sv là sao -.-

Cơ mà bỏ cái thói like dạo rồi à ?

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

20 tháng 6 2019

2) Có: \(a+b+c=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)

Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)

Tương tự:...

\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)

7 tháng 8 2017

3/ b/

TH 1: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 1 số âm hoặc 3 số đều âm thì BĐT đúng. (Thật ra không xảy ra được trường hợp cả 3 số đều âm đâu cứ ghi cho vui thôi).

TH 2: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 2 số âm

Giả sử 2 số âm đó là \(\left(a+b-c\right);\left(b+c-a\right)\)

\(\Rightarrow a+b-c+b+c-a=2b< 0\)trái đề bài. Nên không thể cùng lúc 2 số đều âm.

TH 3: Cả 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)đều dương

Ta có:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{a+b-c+b+c-a}{2}=b\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{matrix}\right.\)

Nhân (1), (2), (3) vế theo vế ta được

\(\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)

Vậy ta có ĐPCM

7 tháng 8 2017

3/ c/ Sửa đề thành a,b,c là 3 cạnh của tam giác nhé.

Ta cần chứng minh

\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)

\(\Leftrightarrow\left[ab^2+ac^2-a^3\right]+\left[ba^2+bc^2-b^3\right]+\left[ca^2+cb^2-c^3\right]>2abc\)

\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}+\dfrac{a^2+b^2-c^2}{2ab}-1>0\)

\(\Leftrightarrow\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{2abc}>0\) (đúng)

2 câu còn lại thì câu 1 sai rõ quá rồi bỏ qua. Còn câu 3a thì để t xem thử có sửa được đề không t làm nốt sau nhé. Giờ bận rồi.

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.

Câu a)

Theo hằng đẳng thức đáng nhớ ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)

\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)

\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)

\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)

Do đó:

\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

Câu b)

\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)

Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)

\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)

Mặt khác xét mẫu số:

\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)

\(=2(x^2+y^2+z^2+xy+yz-xz)\)

Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)

Câu c) Sử dụng kết quả (*) của phần a:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Và mẫu số:

\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)

Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

Câu d)

Xét tử số:

\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)

\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)

\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)

\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)

\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)

Xét mẫu số:

\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)

\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)

\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)

\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)

\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)

\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)

\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)

Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)

Câu e)

Theo phần d ta có:

\(TS=(a-b)(b-c)(a-c)\)

\(MS=ab^2-ac^2-b^3+bc^2\)

\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)

Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)

19 tháng 6 2019

a) Ta có: \(x=a^2-bc\Rightarrow ax=a^3-abc;\) \(y=b^2-ac\Rightarrow b^3-abc;\) \(z=c^2-ab\Rightarrow cz=c^3-abc\)

\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)

Vậy: \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\left(đpcm\right)\)

19 tháng 6 2019

#)Giải :

a) Ta có : 

\(x=a^2-bc\Rightarrow ax=a^3-abc\)

\(y=b^2-ac\Rightarrow by=b^3-abc\)

\(z=c^2-ab\Rightarrow cz=c^3-abc\)

\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\left(đpcm\right)\)