Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ax+by+cz=
=a(a^2-bc)+ b(b^2-ac)+c(c^2-ab)
=a^3-abc+b^3-abc+c^3-abc
=a^3+b^3+c^3-3abc
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
=(a+b+c)(x+y+z)=VT(đpcm)
2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\) và \(VP=\left(ax+by\right)^2\)
tính hiệu của cả VT và VP
suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)
vì \(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)
3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)
biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0
\(\Rightarrow\) Đpcm
a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)
\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)
\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)
\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)
b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)
\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)
\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)
c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)
a, Tương đương : \(a^2x^2+a^2y^2+b^2x^2+b^2y^2\) = \(a^2x^2+2axby+b^2y^2\)
\(a^2y^2-2axby+b^2x^2=0\)
\(\left(ay-bx\right)^2\) = 0
\(ay-bx=0\)
\(ay=bx\)
\(\frac{a}{x}=\frac{b}{y}\) dpcm
Câu b, c làm tương tự câu a
Lời giải:
Xét mẫu số:
\(bc(y-z)^2+ac(x-z)^2+ab(x-y)^2=bc(y^2+z^2)+ac(x^2+z^2)+ab(x^2+y^2)-2(bcyz+acxz+abxy)\) (1)
Vì \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2(abxy+bcyz+acxz)=0\)
\(\Leftrightarrow -2(abxy+bcyz+acxz)=a^2x^2+b^2y^2+c^2z^2\)(2)
Từ \((1);(2)\Rightarrow \text{MS}=bc(y^2+z^2)+ac(x^2+z^2)+ab(x^2+y^2)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)\)
\(=(a+b+c)(ax^2+by^2+cz^2)\)
Do đó:
\(P=\frac{ax^2+by^2+cz^2}{(a+b+c)(ax^2+by^2+cz^2)}=\frac{1}{a+b+c}=\frac{1}{2017}\)
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\text{≥}\left(ax+by+cz\right)^2\)
\("="\text{⇔}\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
⇒ \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\text{=}\left(ax+by+cz\right)^2\)
P/s : Bạn cũng có thể biến đổi VT cũng ra nhé .
a) Ta có: \(x=a^2-bc\Rightarrow ax=a^3-abc;\) \(y=b^2-ac\Rightarrow b^3-abc;\) \(z=c^2-ab\Rightarrow cz=c^3-abc\)
\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)
Vậy: \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\left(đpcm\right)\)
#)Giải :
a) Ta có :
\(x=a^2-bc\Rightarrow ax=a^3-abc\)
\(y=b^2-ac\Rightarrow by=b^3-abc\)
\(z=c^2-ab\Rightarrow cz=c^3-abc\)
\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\left(đpcm\right)\)