K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

B C A D M N I K

+) Do tam giác ABC cân tại A, có AM là trung tuyến nên đồng thời là đường cao, hay \(\widehat{AMB}=90^o\)

Hai tam giác vuông ADB và AMB có chung cạnh huyền AB nên tứ giác ABMD nội tiếp đường tròn đường kính AB.

+) Xét tam giác BMD có N và I lần lượt là trung điểm của BM và BD nên NI là đường trung bình của tam giác. Vậy nên NI // MD. Suy ra \(\widehat{KNC}=\widehat{DMC}\)  (Hai góc đồng vị)

Mà do tứ giác ABMD nội tiếp nên \(\widehat{DAB}=\widehat{DMC}\) nên \(\widehat{KNC}=\widehat{DAB}\)

Vậy thì tứ giác ABNK nội tiếp.

+) Xét tam giác CKN có MD // NK nên áp dụng định lý Ta let ta có:

\(\frac{DC}{CK}=\frac{MC}{CN}=\frac{2}{3}\)

Xét tam giác MDC và ABC có: góc C chung, \(\widehat{CAB}=\widehat{CMD}\) nên \(\Delta ABC\sim\Delta MDC\left(g-g\right)\)

\(\Rightarrow\frac{DC}{BC}=\frac{MC}{AC}\Rightarrow DC.AC=BC.MC\)

\(\Rightarrow\frac{2}{3}AC.CK=\frac{1}{2}BC^2\Rightarrow4AC.CK=3BC^2\)

29 tháng 12 2017

cảm ơn cô nhiều, cô làm bài ấy hay thật

31 tháng 1 2019

A B H C

Học tốt

8 tháng 5 2016

a) Xét tg ABD và tg ACE có

A là góc chung

E = D = 90 độ

AB = AC ( do tg ABC cân tại A )

=> tg ABD = tg ACE ( cạnh huyền - góc nhọn )

b) Vì tg ABD = tg ACE (cmt) => AD = AE ( 2 cạnh tương ứng )

Có : AE + EB = AB ; AD + DC = AC

mà AB = AC ( cmt ) ; AD = AE ( cmt )

=> EB = DC

Xét tg EBC và tg DCB có :

E = D = 90 độ

B = C ( do tg ABC cân )

EB = DC (cmt)

=> tg EBC = tg DCB (gcg)

=>

10 tháng 5 2016

không có câu c) à

14 tháng 9 2019

A B C E D H (ko chắc ở câu c)

a) Xét \(\Delta\)ADC và \(\Delta\) AEB có:

^ADC = ^AEB = 90o

^A chung. (chỗ này ko chắc:v)

AB = AC (\(\Delta\) ABC cân tại A)

Do đó ​\(\Delta\)​ADC = ​\(\Delta\)AEB (cạnh huyền - góc nhọn)

b) Cách 1: Chứng minh tam giác ADH = tam giác AEH như hồi lớp 7 đã học (cách này chắc ăn nhất)​

Cách 2: (ko chắc lắm)

Theo đề bài H là giao điểm 2 đường cao từ đó \(AH\perp BC\). Mặt khác:

Trong tam giác cân, đường cao xuất phát từ đỉnh đồng thời là đường phân giác nên AH là đường phân giác ^A.

Hay ^BAH = ^CAH hay ^DAH = ^EAH (Vì D và E lần lượt thuộc AB và AC)

c) Từ câu a) có ngay AD = AE \(\rightarrow\Delta\)ADE cân tại A. Do đó ^ADE = \(\frac{180^o-\widehat{DAE}}{2}=\frac{180^o-\widehat{BAC}}{2}\)(1)

Mặt khác, do \(\Delta\)ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) ta có ^ADE = ^ABC. Mà 2 góc này ở vị trí đồng vị nên DE // BC (3)

Do \(\Delta\)ABC cân tại A nên ^B = ^C (4)

Từ (3) và (4) ta có BDEC là hình thang cân (đpcm)