(x+1)+(x+3)+(x+3^2)+...+(x+3^99)+(x+3^100)=3^101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
S= 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
S x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300
1
b;
B=1+ (7-5) + (11-9) + ...+(101-99)
B=1+2+2+..+2
B=1+25.2=51
2.
a.
ĐK : x+2 >=0 => x>=-2
\(\left|x+2\right|-x=2\\ \Rightarrow\left|x+2\right|=2+x\\ \Rightarrow\left[{}\begin{matrix}x+2=x+2\\x+2=-x-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\x=-2\end{matrix}\right.\)
Vậy x=-2
Tính x1 + x2 +...+ x99 + x100 + x101 = 0
(x1 + x2)+ ...+ ( x99 + x100)+ x101 = 0
1 + ... + 1 + x101 = 0
1 x 50 + x101 = 0
50 + x101 = 0
x101 = 0 - 50
x101 = -50
Ta có: x100 + x101 = 1
x100 + (-50) = 1
x100 = 1-(-50)
x100 =51
Vậy x101 = 51
A=1.2.3+2.3.4+....+99.100.101
4A=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+....+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-3.4.5.2+....+98.99.100.101-98.99.100.97
4A=98.99.100.101
4A=97990200
A=97990200/4
A=24497550
B=1.2+3.4+5.6+7.8+8.9+...+999.1000
3B=1.2.3+2.3.(4-1)+3.4(5-2)+....+998.999(1001-998)
3B=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+....+998.999.1001-998.999.998
3B=999.1000.1001
3B=999999000
B=999999000/3
B=333333000
C=1+4+9+16+25+36+.....+10000
C=1^2+2^2+3^2+4^2+5^2+6^2+....+100^2
C=(1^2+3^2+5^2+.....+99^2)+(2^2+4^2+6^2+....+100^2)
C=99.100.101/6 + 100.101.102/6
C=166650 +171700
C=338350
Còn câu d bạn dựa vào câu c là làm được ngay bây h mk mỏi tay rùi ko muốn đánh nữa khi nào rảnh mk gửi công thức cho nha bây h mk bận rùi.
chúc bn học tốt
A=1.2.3+2.3.4+....+99.100.101
4.A=1.2.3.(4-0)+2.3.4.(5-1)+...+99.100.101.(102-98)
4.A=1.2.3.1-0.1.2.3+2.3.4.5-1.2.3.4+....+99.100.101.102-98.99.100.101
4.A=99.100.101.102
A=\(\frac{99.100.101.102}{4}\)
B=1.2+2.3+3.4+...+999.1000
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+999.1000.(1001-998)
3.B=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+999.1000.1001-998.999.1000
3.B=999.1000.1001
=>B=\(\frac{999.1000.1001}{3}\)
C và D dễ lắm bạn tự làm nhé
Mk thấy phần a dễ lên bạn tự làm nha
B=(37373737.43-43434343.37):(12+22+32+............+1002)
B=(37.1010101.43-43.101010101.37):(12+22+32+............+1002)
B=0:(12+22+32+............+1002)
B=0
Vậy B=0
Chúc bn học tốt
(x+1)+(x+3)+(x+3^2)+...+(x+3^99)+(x+3^100)=3^101
=>x+1+x+3+x+3^2+...+x+3^99+x+3^100=3^101
=>(x+x+...+x) + (1+3+3^2+...+3^100) = 3^101
101 lần
=>101.x + (1+3+3^2+...+3^100) = 3^101.
Đặt A = 1 + 3 + 3^2 + ... + 3^100
=> 3A = 3.(1 + 3 + 3^2 + ... + 3^100)
=> 3A = 3 + 3^2 + 3^3 + ... + 3^101
=> 3A - A = 3 + 3^2 + 3^3 + ... + 3^101 - 1 - 3 - 3^2 - ... - 3^100
=> 2A = 3^101 - 1
=> A = (3^101 - 1)/2
Thay A = (3^101 - 1)/2 vào trên, ta có:
101.x + (3^101 - 1)/2 = 3^101
=>101x = 3^101 - (3^101-1)/2
=> x = [3^101 - (3^101 - 1)/2]/101
-3.7.6+2.91.4+2.3^2.93+72
tính nhanh nhé các bạn !