K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Ta chứng minh bđt: \(\frac{x}{\sqrt{x-1}}\ge2\)

Thật vậy ta có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\RightarrowĐPCM\)

Về bài toán, ta có:

\(\frac{a^2}{b-1}+\frac{b^2}{b-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\ge8\)

P/s: Ko chắc

15 tháng 12 2017

\(\frac{a^2}{a-1}+\frac{^2b}{b-1}\)\(min\)

\(\Rightarrow\)a-1 min,b-1 min

mà a,b>1\(\Rightarrow\)a-1,b-1>0\(\Rightarrow\)a-1,b-1=1\(\Rightarrow\)a,b=2

vậy

15 tháng 12 2017

\(\dfrac{a^2}{a-1}+\dfrac{b^2}{b-1}\ge2\sqrt{\dfrac{a^2}{a-1}.\dfrac{b^2}{b-1}}=\dfrac{2ab}{\sqrt{1\left(a-1\right)}.\sqrt{1\left(b-1\right)}}\ge\dfrac{2ab}{\dfrac{a-1+1}{2}.\dfrac{b-1+1}{2}}=8\)

Min là 8 khi \(a=b=2\)

9 tháng 12 2021

ab=1

⇒ \(a=\dfrac{1}{b}\)

⇒ \(a^2=\dfrac{1}{b^2}\)

Thay vào P:

\(P=\dfrac{1}{\dfrac{1}{b^2}}+\dfrac{1}{b^2}+\dfrac{2}{\dfrac{1}{b^2}+b^2}\)

   \(=\left(b^2+\dfrac{1}{b^2}\right)+\dfrac{2}{b^2+\dfrac{1}{b^2}}\)

Áp dụng BĐT Cô Si cho 2 số dương

⇒ \(P\) ≥ \(2\sqrt{\left(b^2+\dfrac{1}{b^2}\right).\dfrac{2}{b^2+\dfrac{1}{b^2}}}\)

       \(=2\sqrt{2}\)

Min P= \(2\sqrt{2}\) ⇔ \(b^2=\dfrac{1}{b^2}\) ⇔b=1

 

27 tháng 3 2022

Ta có \(a\sqrt{2-b^2}+b\sqrt{2-a^2}\le\dfrac{a^2+2-b^2}{2}+\dfrac{b^2-2-a^2}{2}=2\) 

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a=\sqrt{2-b^2}\\b=\sqrt{2-a^2}\end{matrix}\right.\Leftrightarrow a^2+b^2=2\)

Ta có \(P=\dfrac{1}{a}+\dfrac{1}{b}-a-b\ge\dfrac{4}{a+b}-\left(a+b\right)\) (BĐT Schwarz) 

\(\dfrac{4}{a+b}+\left(a+b\right)-2\left(a+b\right)\ge2\sqrt{\dfrac{4}{a+b}.\left(a+b\right)}-2\left(a+b\right)\)

= 4 - 2a - 2b 

Lại có 2a \(\le a^2+1\)

<=> -2a \(\ge-a^2-1\)

Tương tự : -2b \(\ge-b^2-1\)

Khi đó P \(\ge4-2a-2b\ge4-a^2-1-b^2-1=2-\left(a^2+b^2\right)=0\)

Dấu "=" xảy ra <=> a = b = 1 

27 tháng 3 2022

Bổ sung : a,b dương 

3 tháng 5 2018

tìm min hay max vậy t chỉ biết tìm max thôi

28 tháng 10 2018

@Akai Haruma chị giúp e với

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

Ta có:

\(A=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

\(=(a+1)-\frac{b^2(a+1)}{b^2+1}+(b+1)-\frac{c^2(b+1)}{c^2+1}+(c+1)-\frac{a^2(c+1)}{a^2+1}\)

\(=(a+b+c+3)-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}\)

\(=6-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}(*)\)

Áp dụng BĐT AM-GM:

\(M\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}\)

\(\Leftrightarrow M\leq \frac{a+b+c+ab+bc+ac}{2}=\frac{3+ab+bc+ac}{2}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

Do đó: \(M\leq \frac{3+3}{2}=3(**)\)

Từ \((*); (**)\Rightarrow A\geq 6-3=3\)

Vậy \(A_{\min}=3\Leftrightarrow a=b=c=1\)

NV
25 tháng 3 2023

a.

\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)

\(\Rightarrow2F=a-F.b\)

\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)

\(\Rightarrow3F^2\le1\)

\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)

Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)

b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a

AH
Akai Haruma
Giáo viên
28 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(a^2+\frac{1}{b^2}\right)(1+1)\geq (a+\frac{1}{b})^2\)

\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{1}{b}}{\sqrt{2}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{d^2}}+\sqrt{d^2+\frac{1}{a^2}}\geq \frac{1}{\sqrt{2}}(a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\)

Mặt khác theo BĐT Cauchy:

\(a+\frac{1}{a}\geq 2; b+\frac{1}{b}\geq 2; c+\frac{1}{c}\geq 2; d+\frac{1}{d}\geq 2\)

\(\Rightarrow \text{VT}\geq \frac{1}{\sqrt{2}}.8=4\sqrt{2}\)

Vậy giá trị nhỏ nhất của biểu thức là $4\sqrt{2}$. Dấu bằng xảy ra khi $a=b=c=d=1$