x/2=y/5 và x*y=90. tìm x; y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)
2) \(2x+3y=180\) mà \(x=y\)
Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)
Vậy \(x=y=36\)
3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)
4) \(3x+5y=13\) mà \(y=2x\) ta có:
\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)
\(y=2x=2\cdot1=2\)
Các câu còn lại bạn làm tương tự
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{xy}{2}=\frac{y^2}{5}=\frac{90}{2}=45\)
\(\Rightarrow y^2=225\)
\(\Rightarrow\orbr{\begin{cases}y=-15\\y=15\end{cases}}\)
Nếu y=-15 thì x=-6
Nếu y=15 thì x=6
\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=\frac{2}{5}y\)
\(x.y=90\Rightarrow\frac{2}{5}y.y=90\Rightarrow y^2=225\Rightarrow y=15\)
\(\Rightarrow x=90:15=6\)
Vậy x=6;y=15
a) C1 bạn dùng tính chất của dãy tỉ số bằng nhau rồi làm thôi
C2 \(\frac{x}{2}=\frac{y}{3}\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow z=\frac{5y}{3}\)
\(z+y+z=-90\)
thay 2 cái trên vào phương trình rồi tìm ra y suy ra x,z
b) \(5.x=7.y\Rightarrow x=\frac{7.y}{5}\)
\(y-x=18\)
thay vào rồi tìm ra y suy ra x
mình ko hiểu bạn titanic ở thay 2 cái trên vào phương trình rồi tìm ra y suy ra x,z là sao
mong bạn giải kĩ hơn
a) x : 11 = y : 7
=> x/7 = y/11 và x + y = -54 Thay vào ta có :
x/7 = y/11 = (x+y)/(7+11) = -54/18= -3
=> x = -3.7 = -27
=> y = -3.11 = -33
hai gọc so le trong là 2 góc ở vị trí so le trong
2 góc này đc tạo bởi 2 đường thẳng song song và đường thẳng thứ 3 cắt 2 đường thẳng đó
như thế này nè
cái tròn đó là vị trí 2 góc so le trong
Có :
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)
Vậy ...
Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15
2x = 3z => x/3 = z/2 => x/6 = z/4
=> x/6 = y/15 = z/4
Đặt x/6 = y/15 = z/4 = k
=> x = 6k, y = 15k, z = 4k
Mà xy = 90
=> 6.k.15.k = 90
=> 90.k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
+) k = 1 => x = 6, y = 15, z = 4
+) k = -1 => x = -6, y = -15, z = -4
Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Ta có \(xy=90\Leftrightarrow2k5k=90\Leftrightarrow10k^2=90\Leftrightarrow k^2=9\)
\(\Rightarrow\) k = + 3
Với \(k=3\Leftrightarrow x=2k=2.3=6;y=5k=5.3=15\)
Với \(k=-3\Leftrightarrow x=2k=2.\left(-3\right)=-6;y=5k=5.\left(-3\right)=-15\)