Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : `x/5=y/3` và `x-y=-2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5 = y/3 =(x-y)/(5-3)=(-2)/2=-1`
`=>x/5=-1=>x=-1.5=-5`
`=>y/3=-1=>y=-1.3=-3`
Vậy `x=-5;y=-3`
Áp dụng tính chất của DTSBN, ta được:
x/5=y/3=(x-y)/(5-3)=-2/2=-1
=>x=-5; y=-3
\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)
Vậy...
Vì x, y > 0
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 )
x2 - y2 = 4
<=> ( 5k )2 - ( 4k )2 = 4
<=> 25k2 - 16k2 = 4
<=> 9k2 = 4
<=> k2 = 4/9
<=> k = 2/3 ( vì k > 0 )
=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)
heeweghjk/k uubunnnnnnnnnnbhtytcvbyu74xui b bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu
\(\dfrac{x}{y}=\dfrac{2}{5}=\dfrac{x}{2}=\dfrac{y}{5}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k2\\y=k5\end{matrix}\right.\)
mà \(xy=40\)
\(\Rightarrow2k.5k=40\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{5}=4\\\dfrac{x}{2}=\dfrac{y}{5}=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=8;y=20\\x=-8;y=-20\end{matrix}\right.\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)
Vì x : 1,2 = y : 0,4 nên \(\frac{x}{{1,2}} = \frac{y}{{0,4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,2}} = \frac{y}{{0,4}} = \frac{{x - y}}{{1,2 - 0,4}} = \frac{2}{{0,8}} = 2,5\)
Vậy x = 1,2 . 2,5 = 3; y = 0,4 . 2,5 = 1
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{xy}{2}=\frac{y^2}{5}=\frac{90}{2}=45\)
\(\Rightarrow y^2=225\)
\(\Rightarrow\orbr{\begin{cases}y=-15\\y=15\end{cases}}\)
Nếu y=-15 thì x=-6
Nếu y=15 thì x=6
\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=\frac{2}{5}y\)
\(x.y=90\Rightarrow\frac{2}{5}y.y=90\Rightarrow y^2=225\Rightarrow y=15\)
\(\Rightarrow x=90:15=6\)
Vậy x=6;y=15