K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

\(A=1+5+5^2+...+5^{97}+5^{98}.\)

\(A=\left(1+5+5^2\right)+....+\left(5^{96}+5^{97}+5^{98}\right)\)

\(A=31+...+5^{96}.31\)

\(A=31.\left(1+...+5^{96}\right)\)

\(\Rightarrow A⋮31\)

10 tháng 12 2017

Ta có : \(31=1+5+5^2\)

\(1+5+5^2=31\)

\(5^3\left(1+5+5^2\right)=5^3+5^4+5^5\)

\(5^6\left(1+5+5^2\right)=5^6+5^7+5^7\)

...

\(5^{96}\left(1+5+5^2\right)=5^{96}+5^{97}+5^{98}\)

Có thể chia thành 32 cặp như thế vì từ 1 đến 96 có 96 số hạng

Vậy ta có A chia hết cho 31

13 tháng 7 2021

chỉ có làm thì mới có ăn

23 tháng 10 2022

ko giúp thì  đừng nhắn thế

1 tháng 1 2017

A=1+5+52+533+.....+597+598+599

A=(1+5+52) +533×544×....×5599

A=31 +533×544×....×5599

A=31×533+544×...×5599

=> A ÷ 31

Theo mk nghi la vay . Hk chac nha

1 tháng 1 2017

đề bài khó quá, hay là bạn viết lộn đề rùi, dạng này mình chưa gặp bao giờ!

10 tháng 10 2021

giúp mình vs mình đang cần gấp T-T

10 tháng 10 2021

Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)

\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)

\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)

\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

DT
23 tháng 9 2023

\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)

23 tháng 9 2023

dpcp là gì vậy ạ

29 tháng 10 2023

Hệ số của đơn thức 3x mũ 2y 4xy mũ 3

29 tháng 10 2023

\(B=5+5^2+5^3+...+5^{88}+5^{89}+5^{90}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{88}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{88}\right)⋮31\)

21 tháng 12 2019

a, Ta có:

2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

=  2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100

= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4

=  2 . 31 + 2 6 . 31 + . . . + 2 96 . 31

=  2 + 2 6 + . . . + 2 96 . 31  chia hết cho 31

b, Ta có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5

=  5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6

=  ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6  chia hết cho 6

Ta lại có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150  (có đúng 25 nhóm)

[ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... +  [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]

=  [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... +  [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]

=  ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... +  ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )

=  ( 5 + 5 2 + 5 3 ) . 126 +  ( 5 7 + 5 8 + 5 9 ) . 126 +  ... + ( 5 145 + 5 146 + 5 147 ) . 126

= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... +  ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.

Vậy  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150  vừa chia hết cho 6, vừa chia hết cho 126

 

6 tháng 11 2023

Chịu 🤭🤭🤭

17 tháng 10 2019

25 tháng 7 2021

a, A = (2 + 22) + (23+24) + ... + (259+260)

   = 2(1+2) + 23(1+2) + ... + 259(1+2)

   = 2. 3 + 23.3 + ... + 259. 3

   = 3(2+23+...+259)

Vì 3 chia hết cho 3 nên A chia hết cho 3

A= (2+22+23)+(24+25+26)+...+(258+259+260)

  = 2(1+2+22) + 24(1+2+22)+...+258(1+2+22)

  = 2. 7 + 24. 7 + ... + 258. 7

Vì 7 chia hết cho 7 nên A chia hết cho 7

A= (2+22+23+24) + (25+26+27+28)+...+(257+258+259+260)

  = 2(1+2+22+23) + 25(1+2+22+23)+...+ 257(1+2+22+23)

  = 2. 15 + 25.15 + ... + 257.15

Vì 15 chia hết cho 15 nên A chia hết cho 15

Chúc bn học tốt, còn phần b mik đang nghĩ, tạm thời phần a đã nha bn

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)